Skip to content

Pytorch implementation for Controllable Text-to-Image Generation.

Notifications You must be signed in to change notification settings

mengqiDyangge/ControlGAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ControlGAN

Pytorch implementation for Controllable Text-to-Image Generation. The goal is to generate images from text, and also allow the user to manipulate synthetic images using natural language descriptions, in one framework.

Overview

Controllable Text-to-Image Generation.
Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, Philip H. S. Torr.
University of Oxford
In Neural Information Processing Systems, 2019.

Data

  1. Download the preprocessed metadata for bird and coco, and save both into data/
  2. Download bird dataset and extract the images to data/birds/
  3. Download coco dataset and extract the images to data/coco/

Training

All code was developed and tested on CentOS 7 with Python 3.7 (Anaconda) and PyTorch 1.1.

DAMSM model includes text encoder and image encoder

  • Pre-train DAMSM model for bird dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0
  • Pre-train DAMSM model for coco dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1

ControlGAN model

  • Train ControlGAN model for bird dataset:
python main.py --cfg cfg/train_bird.yml --gpu 2
  • Train ControlGAN model for coco dataset:
python main.py --cfg cfg/train_coco.yml --gpu 3

*.yml files include configuration for training and testing.

Pretrained DAMSM Model

Pretrained ControlGAN Model

Testing

  • Test ControlGAN model for bird dataset:
python main.py --cfg cfg/eval_bird.yml --gpu 4
  • Test ControlGAN model for coco dataset:
python main.py --cfg cfg/eval_coco.yml --gpu 5

Evaluation

Code Structure

  • code/main.py: the entry point for training and testing.
  • code/trainer.py: creates the main networks, harnesses and reports the progress of training.
  • code/model.py: defines the architecture of ControlGAN.
  • code/attention.py: defines the spatial and channel-wise attentions.
  • code/VGGFeatureLoss.py: defines the architecture of the VGG-16.
  • code/datasets.py: defines the class for loading images and captions.
  • code/pretrain_DAMSM.py: creates the text and image encoders, harnesses and reports the progress of training.
  • code/miscc/losses.py: defines and computes the losses.
  • code/miscc/config.py: creates the option list.
  • code/miscc/utils.py: additional functions.

Citation

If you find this useful for your research, please use the following.

@article{li2019control,
  title={Controllable text-to-image generation},
  author={Li, Bowen and Qi, Xiaojuan and Lukasiewicz, Thomas and H.~S.~Torr, Philip},
  journal={arXiv preprint arXiv:1909.07083},
  year={2019}
}

Acknowledgements

This code borrows heavily from AttnGAN repository. Many thanks.

About

Pytorch implementation for Controllable Text-to-Image Generation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%