Skip to content

a Low resolution configuration to be compared with eORCA12.L75-GJM2020

Notifications You must be signed in to change notification settings

meom-configurations/eORCA1-GJM2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 

Repository files navigation

eORCA1-GJM2020 : a Low resolution configuration, comparable with eORCA12.L75-GJM2020

Overview

eORCA1-GJM2020 experiments were performed with similar setting than eORCA12.L75-GJM2020, for comparison of the mixed layer physics. At low resolution, parametrizations for missing eddies effects are available in NEMO:

  • Eddy Induced Velocity ( eiv) (aka Gent Mc Williams 90 or GM90 for short).
  • Mixed Layer Eddies (mle) (aka Fox-Kemper 2016 or FK16 for short).

In a series of experiments the impacts of eiv and mle are explored.

Experiments

eORCA1-GJM2020 : base line

  • This configuration uses the standard settings of eORCA1 configuration
    • eiv GM90
    • No mle no FK16
  • Forced by JRA55, 3-hourly fields
  • Use NCAR bulk formulae (aka CORE).
  • Use TEOS-10 equation of state, hence:
    • Temperatures are Conservative temperatures (CT) [deg C].
    • Salinity are Absolute Salinity (SA) [g/kg]
  • Run starts in 1979 from WOA13 initial TS conditions at rest.
  • Period : 1979-2019
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
 ln_ldfeiv   = .true.   ! use eddy induced velocity parameterization
    !
    !                        !  Coefficients:
    nn_aei_ijk_t    = 0           !  space/time variation of eddy coefficient:
    !                             !   =-20 (=-30)    read in eddy_induced_velocity_2D.nc (..._3D.nc) file
    !                             !   =  0           constant
    !                             !   = 10 F(k)      =ldf_c1d
    !                             !   = 20 F(i,j)    =ldf_c2d
    !                             !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
    !                             !   = 30 F(i,j,k)  =ldf_c2d * ldf_c1d
    !                        !  time invariant coefficients:  aei0 = 1/2  Ue*Le
    rn_Ue        = 0.02           !  lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
    rn_Le        = 200.e+3        !  lateral diffusive length   [m]   (nn_aht_ijk_t= 0, 10)
    !
    ln_ldfeiv_dia =.false.   ! diagnose eiv stream function and velocities
/
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
 ln_mle      = .false.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
...
/

eORCA1-GJM2020b : Same as base line + Fox Kemper (mle)

  • eiv
  • mle Fox-Kemper parametrization
  • Run starts from GJM2020 restart files 01.01.2000
  • Period: 2000-2019
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
ln_ldfeiv   = .true.   ! use eddy induced velocity parameterization
   !
   !                        !  Coefficients:
   nn_aei_ijk_t    = 0           !  space/time variation of eddy coefficient:
   !                             !   =-20 (=-30)    read in eddy_induced_velocity_2D.nc (..._3D.nc) file
   !                             !   =  0           constant
   !                             !   = 10 F(k)      =ldf_c1d
   !                             !   = 20 F(i,j)    =ldf_c2d
   !                             !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
   !                             !   = 30 F(i,j,k)  =ldf_c2d * ldf_c1d
   !                        !  time invariant coefficients:  aei0 = 1/2  Ue*Le
   rn_Ue        = 0.02           !  lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
   rn_Le        = 200.e+3        !  lateral diffusive length   [m]   (nn_aht_ijk_t= 0, 10)
   !
   ln_ldfeiv_dia =.false.   ! diagnose eiv stream function and velocities
/
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
ln_mle      = .true.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
rn_ce       = 0.06      ! magnitude of the MLE (typical value: 0.06 to 0.08)
nn_mle      = 1         ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
rn_lf       = 5.e+3     ! typical scale of mixed layer front (meters)                      (case rn_mle=0)
rn_time     = 172800.   ! time scale for mixing momentum across the mixed layer (seconds)  (case rn_mle=0)
rn_lat      = 20.       ! reference latitude (degrees) of MLE coef.                        (case rn_mle=1)
nn_mld_uv   = 0         ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
nn_conv     = 0         ! =1 no MLE in case of convection ; =0 always MLE
rn_rho_c_mle = 0.01      ! delta rho criterion used to calculate MLD for FK
/

eORCA1-GJM2020c : Same as base line but NO eiv, NO mle

  • NO eiv
  • NO mle
  • Run starts from GJM2020 restart files 01.01.2000
  • Period: 2000-2019
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
 ln_ldfeiv   = .false.   ! use eddy induced velocity parameterization
/
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
 ln_mle      = .false.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
/

eORCA1-GJM2020d : Same as base line but NO eiv, mle

  • NO eiv
  • mle
  • Run starts from GJM2020 restart files 01.01.2000
  • Period: 2000-2019
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
 ln_mle      = .true.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
 rn_ce       = 0.06      ! magnitude of the MLE (typical value: 0.06 to 0.08)
 nn_mle      = 1         ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
 rn_lf       = 5.e+3     ! typical scale of mixed layer front (meters)                      (case rn_mle=0)
 rn_time     = 172800.   ! time scale for mixing momentum across the mixed layer (seconds)  (case rn_mle=0)
 rn_lat      = 20.       ! reference latitude (degrees) of MLE coef.                        (case rn_mle=1)
 nn_mld_uv   = 0         ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
 nn_conv     = 0         ! =1 no MLE in case of convection ; =0 always MLE
 rn_rho_c_mle = 0.01      ! delta rho criterion used to calculate MLD for FK
/
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
 ln_ldfeiv   = .false.   ! use eddy induced velocity parameterization
    !
    !                        !  Coefficients:
    nn_aei_ijk_t    = 0           !  space/time variation of eddy coefficient:
    !                             !   =-20 (=-30)    read in eddy_induced_velocity_2D.nc (..._3D.nc) file
    !                             !   =  0           constant
    !                             !   = 10 F(k)      =ldf_c1d
    !                             !   = 20 F(i,j)    =ldf_c2d
    !                             !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
    !                             !   = 30 F(i,j,k)  =ldf_c2d * ldf_c1d
    !                        !  time invariant coefficients:  aei0 = 1/2  Ue*Le
    rn_Ue        = 0.02           !  lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
    rn_Le        = 200.e+3        !  lateral diffusive length   [m]   (nn_aht_ijk_t= 0, 10)
    !
    ln_ldfeiv_dia =.false.   ! diagnose eiv stream function and velocities
/

eORCA1-GJM2020e : Same as base line but eiv, no mle no tke gls (k-eps)

  • eiv
  • no mle
  • no TKE
  • GLS (k-epsilon)
  • Run starts from GJM2020 restart files 01.01.2000
  • Period: 2000-2019
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
 ln_ldfeiv   = .true.   ! use eddy induced velocity parameterization
    !
    !                        !  Coefficients:
    nn_aei_ijk_t    = 0           !  space/time variation of eddy coefficient:
    !                             !   =-20 (=-30)    read in eddy_induced_velocity_2D.nc (..._3D.nc) file
    !                             !   =  0           constant
    !                             !   = 10 F(k)      =ldf_c1d
    !                             !   = 20 F(i,j)    =ldf_c2d
    !                             !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
    !                             !   = 30 F(i,j,k)  =ldf_c2d * ldf_c1d
    !                        !  time invariant coefficients:  aei0 = 1/2  Ue*Le
    rn_Ue        = 0.02           !  lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
    rn_Le        = 200.e+3        !  lateral diffusive length   [m]   (nn_aht_ijk_t= 0, 10)
    !
    ln_ldfeiv_dia =.false.   ! diagnose eiv stream function and velocities
/
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
 ln_mle      = .false.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
/
!-----------------------------------------------------------------------
&namzdf        !   vertical physics manager                             (default: NO selection)
!-----------------------------------------------------------------------
 !                       ! adaptive-implicit vertical advection
 ln_zad_Aimp = .true.      !  Courant number dependent scheme (Shchepetkin 2015)
 !
 !                       ! type of vertical closure (required)
 ln_zdfcst   = .false.      !  constant mixing
 ln_zdfric   = .false.      !  local Richardson dependent formulation (T =>   fill namzdf_ric)
 ln_zdftke   = .false.      !  Turbulent Kinetic Energy closure       (T =>   fill namzdf_tke)
 ln_zdfgls   = .true.       !  Generic Length Scale closure           (T =>   fill namzdf_gls)
 ln_zdfosm   = .false.      !  OSMOSIS BL closure                     (T =>   fill namzdf_osm)
 !
 !                       ! convection
 ln_zdfevd   = .false.       !  enhanced vertical diffusion
    nn_evdm     =    0         ! apply on tracer (=0) or on tracer and momentum (=1)
    rn_evd      =   10.        ! mixing coefficient [m2/s]
 ln_zdfnpc   = .false.      !  Non-Penetrative Convective algorithm
    nn_npc      =    1         ! frequency of application of npc
    nn_npcp     =  365         ! npc control print frequency
 !
 ln_zdfddm   = .false.   ! double diffusive mixing
    rn_avts  =    1.e-4     !  maximum avs (vertical mixing on salinity)
    rn_hsbfr =    1.6       !  heat/salt buoyancy flux ratio
 !
 !                       ! gravity wave-driven vertical mixing
 ln_zdfiwm   = .true.       ! internal wave-induced mixing            (T =>   fill namzdf_iwm)
 ln_zdfswm   = .false.      ! surface  wave-induced mixing            (T => ln_wave=ln_sdw=T )
 !
 !                       ! coefficients
 rn_avm0     =   1.4e-6     !  vertical eddy viscosity   [m2/s]       (background Kz if ln_zdfcst=F)
 rn_avt0     =   1.e-10     !  vertical eddy diffusivity [m2/s]       (background Kz if ln_zdfcst=F)
 nn_avb      =    0         !  profile for background avt & avm (=1) or not (=0)
 nn_havtb    =    1         !  horizontal shape for avtb (=1) or not (=0)
/
!-----------------------------------------------------------------------
&namzdf_gls    !   GLS vertical diffusion                               (ln_zdfgls =T)
!-----------------------------------------------------------------------
 rn_emin       = 1.e-7   !  minimum value of e   [m2/s2]
 rn_epsmin     = 1.e-12  !  minimum value of eps [m2/s3]
 ln_length_lim = .true.  !  limit on the dissipation rate under stable stratification (Galperin et al., 1988)
 rn_clim_galp  = 0.267   !  galperin limit
 ln_sigpsi     = .true.  !  Activate or not Burchard 2001 mods on psi schmidt number in the wb case
 rn_crban      = 100.    !  Craig and Banner 1994 constant for wb tke flux
 rn_charn      = 70000.  !  Charnock constant for wb induced roughness length
 rn_hsro       =  0.02   !  Minimum surface roughness
 rn_frac_hs    =   1.3   !  Fraction of wave height as roughness (if nn_z0_met>1)
 nn_z0_met     =     2   !  Method for surface roughness computation (0/1/2/3)
 !                             ! =3 requires ln_wave=T
 nn_bc_surf    =     1   !  surface condition (0/1=Dir/Neum)
 nn_bc_bot     =     1   !  bottom condition (0/1=Dir/Neum)
 nn_stab_func  =     2   !  stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
 nn_clos       =     1   !  predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)
/

eORCA1-GJM2020f : Same as base GJM2020e but no eiv, no mle no tke gls (k-eps)

  • no eiv
  • no mle
  • no TKE
  • GLS (k-epsilon)
  • Run starts from GJM2020 restart files 01.01.2000
  • Period: 2000-2019
!-----------------------------------------------------------------------
&namtra_eiv    !   eddy induced velocity param.                         (default: OFF)
!-----------------------------------------------------------------------
 ln_ldfeiv   = .false.   ! use eddy induced velocity parameterization
/
!-----------------------------------------------------------------------
&namtra_mle    !   mixed layer eddy parametrisation (Fox-Kemper)       (default: OFF)
!-----------------------------------------------------------------------
 ln_mle      = .false.   ! (T) use the Mixed Layer Eddy (MLE) parameterisation
/
!-----------------------------------------------------------------------
&namzdf        !   vertical physics manager                             (default: NO selection)
!-----------------------------------------------------------------------
 !                       ! adaptive-implicit vertical advection
 ln_zad_Aimp = .true.      !  Courant number dependent scheme (Shchepetkin 2015)
 !
 !                       ! type of vertical closure (required)
 ln_zdfcst   = .false.      !  constant mixing
 ln_zdfric   = .false.      !  local Richardson dependent formulation (T =>   fill namzdf_ric)
 ln_zdftke   = .false.      !  Turbulent Kinetic Energy closure       (T =>   fill namzdf_tke)
 ln_zdfgls   = .true.       !  Generic Length Scale closure           (T =>   fill namzdf_gls)
 ln_zdfosm   = .false.      !  OSMOSIS BL closure                     (T =>   fill namzdf_osm)
 !
 !                       ! convection
 ln_zdfevd   = .false.       !  enhanced vertical diffusion
    nn_evdm     =    0         ! apply on tracer (=0) or on tracer and momentum (=1)
    rn_evd      =   10.        ! mixing coefficient [m2/s]
 ln_zdfnpc   = .false.      !  Non-Penetrative Convective algorithm
    nn_npc      =    1         ! frequency of application of npc
    nn_npcp     =  365         ! npc control print frequency
 !
 ln_zdfddm   = .false.   ! double diffusive mixing
    rn_avts  =    1.e-4     !  maximum avs (vertical mixing on salinity)
    rn_hsbfr =    1.6       !  heat/salt buoyancy flux ratio
 !
 !                       ! gravity wave-driven vertical mixing
 ln_zdfiwm   = .true.       ! internal wave-induced mixing            (T =>   fill namzdf_iwm)
 ln_zdfswm   = .false.      ! surface  wave-induced mixing            (T => ln_wave=ln_sdw=T )
 !
 !                       ! coefficients
 rn_avm0     =   1.4e-6     !  vertical eddy viscosity   [m2/s]       (background Kz if ln_zdfcst=F)
 rn_avt0     =   1.e-10     !  vertical eddy diffusivity [m2/s]       (background Kz if ln_zdfcst=F)
 nn_avb      =    0         !  profile for background avt & avm (=1) or not (=0)
 nn_havtb    =    1         !  horizontal shape for avtb (=1) or not (=0)
/
!-----------------------------------------------------------------------
&namzdf_gls    !   GLS vertical diffusion                               (ln_zdfgls =T)
!-----------------------------------------------------------------------
 rn_emin       = 1.e-7   !  minimum value of e   [m2/s2]
 rn_epsmin     = 1.e-12  !  minimum value of eps [m2/s3]
 ln_length_lim = .true.  !  limit on the dissipation rate under stable stratification (Galperin et al., 1988)
 rn_clim_galp  = 0.267   !  galperin limit
 ln_sigpsi     = .true.  !  Activate or not Burchard 2001 mods on psi schmidt number in the wb case
 rn_crban      = 100.    !  Craig and Banner 1994 constant for wb tke flux
 rn_charn      = 70000.  !  Charnock constant for wb induced roughness length
 rn_hsro       =  0.02   !  Minimum surface roughness
 rn_frac_hs    =   1.3   !  Fraction of wave height as roughness (if nn_z0_met>1)
 nn_z0_met     =     2   !  Method for surface roughness computation (0/1/2/3)
 !                             ! =3 requires ln_wave=T
 nn_bc_surf    =     1   !  surface condition (0/1=Dir/Neum)
 nn_bc_bot     =     1   !  bottom condition (0/1=Dir/Neum)
 nn_stab_func  =     2   !  stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
 nn_clos       =     1   !  predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)
/

Results:

About

a Low resolution configuration to be compared with eORCA12.L75-GJM2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published