Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
226 changes: 226 additions & 0 deletions examples/coding_env_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
#!/usr/bin/env python3
"""Solve a coding task with a hosted LLM via Hugging Face Inference.

This script mirrors ``textarena_wordle_inference.py`` but targets the Coding
environment. It launches the CodingEnv Docker image locally and asks an
OpenAI-compatible model served through Hugging Face's router to iteratively
produce Python code until the task is solved.

Prerequisites
-------------
1. Build the Coding environment Docker image::

docker build \
-f src/envs/coding_env/server/Dockerfile \
-t coding-env:latest .

2. Set your Hugging Face token, or any other API key that is compatible with the OpenAI API:

export HF_TOKEN=your_token_here
export API_KEY=your_api_key_here

3. Run the script::

python examples/coding_env_inference.py

The script keeps sending execution feedback to the model until it prints
``Result: 338350`` or reaches the configured step limit.
"""

from __future__ import annotations

import os
import re
from typing import List, Tuple

from openai import OpenAI

from envs.coding_env import CodeAction, CodingEnv


# ---------------------------------------------------------------------------
# Configuration
# ---------------------------------------------------------------------------

API_BASE_URL = "https://router.huggingface.co/v1"
API_KEY = os.getenv("API_KEY") or os.getenv("HF_TOKEN")

MODEL = "openai/gpt-oss-120b:novita"
MAX_STEPS = 5
VERBOSE = True

CODING_TASK = (
"Write Python code that prints the sum of squares of the integers from 1 "
"to 100 inclusive. The final line must be exactly `Result: <value>` with "
"the correct number substituted."
)
EXPECTED_SUBSTRING = "Result: 338350"

SYSTEM_PROMPT = (
"You are an expert Python programmer. Respond with valid Python code that "
"solves the user's task. Always wrap your final answer in a fenced code "
"block starting with ```python. Provide a complete script that can be "
"executed as-is, with no commentary outside the code block."
)


# ---------------------------------------------------------------------------
# Helpers
# ---------------------------------------------------------------------------

def extract_python_code(text: str) -> str:
"""Extract the first Python code block from the model output."""

code_blocks = re.findall(
r"```(?:python)?\s*(.*?)```",
text,
re.IGNORECASE | re.DOTALL,
)
if code_blocks:
return code_blocks[0].strip()
return text.strip()


def format_feedback(
step: int,
stdout: str,
stderr: str,
exit_code: int,
) -> str:
"""Generate feedback text describing the previous execution."""

stdout_display = stdout if stdout.strip() else "<empty>"
stderr_display = stderr if stderr.strip() else "<empty>"
return (
f"Execution feedback for step {step}:\n"
f"exit_code={exit_code}\n"
f"stdout:\n{stdout_display}\n"
f"stderr:\n{stderr_display}\n"
"If the task is not solved, return an improved Python script."
)


def build_initial_prompt(task: str) -> str:
"""Construct the first user prompt for the coding task."""

return (
"You must write Python code to satisfy the following task. "
"When executed, your script should behave exactly as described.\n\n"
f"Task:\n{task}\n\n"
"Reply with the full script in a single ```python code block."
)


# ---------------------------------------------------------------------------
# Gameplay
# ---------------------------------------------------------------------------

def solve_coding_task(
env: CodingEnv,
client: OpenAI,
) -> Tuple[bool, List[str]]:
"""Iteratively ask the model for code until the task is solved."""

history = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": build_initial_prompt(CODING_TASK)},
]

obs = env.reset().observation

transcripts: List[str] = []

for step in range(1, MAX_STEPS + 1):
response = client.chat.completions.create(
model=MODEL,
messages=history,
max_tokens=2048,
temperature=0.2,
)

assistant_message = response.choices[0].message.content.strip()
history.append({"role": "assistant", "content": assistant_message})

code = extract_python_code(assistant_message)

if VERBOSE:
print(f"\n🛠️ Step {step}: executing model-produced code")
print(code)

result = env.step(CodeAction(code=code))
obs = result.observation

transcripts.append(
(
f"Step {step} | exit_code={obs.exit_code}\n"
f"stdout:\n{obs.stdout}\n"
f"stderr:\n{obs.stderr}\n"
)
)

if VERBOSE:
print(" ▶ exit_code:", obs.exit_code)
if obs.stdout:
print(" ▶ stdout:\n" + obs.stdout)
if obs.stderr:
print(" ▶ stderr:\n" + obs.stderr)

solved = obs.exit_code == 0 and EXPECTED_SUBSTRING in obs.stdout
if solved:
return True, transcripts

history.append(
{
"role": "user",
"content": format_feedback(
step,
obs.stdout,
obs.stderr,
obs.exit_code,
),
}
)

# Keep conversation history compact to avoid exceeding context limits
if len(history) > 20:
history = [history[0]] + history[-19:]

return False, transcripts


# ---------------------------------------------------------------------------
# Entrypoint
# ---------------------------------------------------------------------------

def main() -> None:
if not API_KEY:
raise SystemExit(
"HF_TOKEN (or API_KEY) must be set to query the model."
)

client = OpenAI(base_url=API_BASE_URL, api_key=API_KEY)

env = CodingEnv.from_docker_image(
"coding-env:latest",
ports={8000: 8000},
)

try:
success, transcripts = solve_coding_task(env, client)
finally:
env.close()

print(
"\n✅ Session complete"
if success
else "\n⚠️ Session finished without solving the task"
)
print("--- Execution transcripts ---")
for entry in transcripts:
print(entry)


if __name__ == "__main__":
main()