Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions torchrec/distributed/tests/test_pt2.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,42 @@ def forward(self, kjt: KeyedJaggedTensor):
test_pt2_ir_export=True,
)

def test_kjt_offset_per_key(self) -> None:
class M(torch.nn.Module):
def forward(self, kjt: KeyedJaggedTensor):
return kjt.offset_per_key()

kjt: KeyedJaggedTensor = make_kjt([2, 3, 4, 5, 6], [1, 2, 1, 1])

self._test_kjt_input_module(
M(),
kjt.keys(),
(kjt._values, kjt._lengths),
test_aot_inductor=False,
test_pt2_ir_export=True,
)

# pyre-ignore
def test_kjt__getitem__(self) -> None:
class M(torch.nn.Module):
def forward(self, kjt: KeyedJaggedTensor):
out0 = kjt["key0"]
out1 = kjt["key1"]

return out0, out1

kjt: KeyedJaggedTensor = make_kjt([2, 3, 4, 5, 6], [1, 2, 1, 1])

self._test_kjt_input_module(
M(),
kjt.keys(),
(kjt._values, kjt._lengths),
test_dynamo=False,
test_aot_inductor=False,
test_pt2_ir_export=True,
)

# pyre-ignores
@unittest.skipIf(
torch.cuda.device_count() <= 1,
"Not enough GPUs available",
Expand Down
113 changes: 97 additions & 16 deletions torchrec/sparse/jagged_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,6 +244,10 @@ def _permute_tensor_by_segments(
return permuted_tensor, permuted_weights


def is_non_strict_exporting() -> bool:
return not torch.compiler.is_dynamo_compiling() and torch.compiler.is_compiling()


class JaggedTensorMeta(abc.ABCMeta, torch.fx._symbolic_trace.ProxyableClassMeta):
pass

Expand Down Expand Up @@ -822,9 +826,48 @@ def _maybe_compute_offset_per_key(
offsets=offsets,
values=values,
)
return _length_per_key, _cumsum(_length_per_key)

if is_non_strict_exporting():
# only torch.export non-strict case
return (
_length_per_key,
(
torch.ops.fbgemm.asynchronous_complete_cumsum(
torch._refs.tensor(
_length_per_key,
dtype=torch.int32,
device=torch.device("cpu"),
pin_memory=False,
requires_grad=False,
)
).tolist()
if len(_length_per_key) > 0
else []
),
)
else:
return _length_per_key, _cumsum(_length_per_key)
elif offset_per_key is None:
return length_per_key, _cumsum(length_per_key)
if is_non_strict_exporting():
# only torch.export non-strict case
return (
length_per_key,
(
torch.ops.fbgemm.asynchronous_complete_cumsum(
torch._refs.tensor(
length_per_key,
dtype=torch.int32,
device=torch.device("cpu"),
pin_memory=False,
requires_grad=False,
)
).tolist()
if len(length_per_key) > 0
else []
),
)
else:
return length_per_key, _cumsum(length_per_key)
else:
return length_per_key, offset_per_key

Expand Down Expand Up @@ -1825,27 +1868,65 @@ def flatten_lengths(self) -> "KeyedJaggedTensor":

def __getitem__(self, key: str) -> JaggedTensor:
offset_per_key = self.offset_per_key()
length_per_key = self.length_per_key()
index = self._key_indices()[key]
start_offset = offset_per_key[index]
end_offset = (
offset_per_key[index + 1]
if index + 1 < len(offset_per_key)
else start_offset
)
return JaggedTensor(
values=self._values[start_offset:end_offset],
weights=(
None
if self.weights_or_none() is None
else self.weights()[start_offset:end_offset]
),
lengths=self.lengths()[
self.lengths_offset_per_key()[index] : self.lengths_offset_per_key()[
index + 1
]
],
offsets=None,
)

if is_non_strict_exporting():
_lengths = torch.narrow(
self.lengths(),
0,
self.lengths_offset_per_key()[index],
self.lengths_offset_per_key()[index + 1]
- self.lengths_offset_per_key()[index],
)
sz = length_per_key[index]

torch._check_is_size(start_offset)
torch._check_is_size(sz)
torch._check(start_offset <= self.values().size(0))
torch._check(sz <= self.values().size(0))

return JaggedTensor(
values=torch.narrow(
self.values(),
0,
start_offset,
sz,
),
weights=(
None
if self.weights_or_none() is None
else torch.narrow(
self.weights(),
0,
start_offset,
sz,
)
),
lengths=_lengths,
offsets=None,
)
else:
return JaggedTensor(
values=self._values[start_offset:end_offset],
weights=(
None
if self.weights_or_none() is None
else self.weights()[start_offset:end_offset]
),
lengths=self.lengths()[
self.lengths_offset_per_key()[
index
] : self.lengths_offset_per_key()[index + 1]
],
offsets=None,
)

def to_dict(self) -> Dict[str, JaggedTensor]:
_jt_dict = _maybe_compute_kjt_to_jt_dict(
Expand Down