Skip to content

mfclabber/russian-food-recognition

Repository files navigation

Russian Food Recognition

This repository provides a robust framework for recognizing various Russian dishes using the Faster R-CNN deep learning architecture. This project aims to assist in the automatic identification and categorization of Russian cuisine in images, which can be applied in diverse domains such as food blogging, dietary tracking, and restaurant automation.

Table of Contents

Overview

The Russian Food Recognition project leverages the Faster R-CNN and SSD models to detect and classify different types of Russian food in images. Faster R-CNN is a state-of-the-art object detection model that provides high accuracy and speed, making it suitable for real-time food recognition applications.

Features

  • High Accuracy: Utilizes Faster R-CNN and SSD for precise food detection and classification.
  • Extensive Dataset: Trained on a diverse dataset of Russian dishes.
  • Scalability: Easily adaptable to include more food categories or different cuisines.
  • Modular Design: Clear separation of data processing, model training, and evaluation modules.

Application

You can vizualize this project in application

or run locally:

streamlit run app.py

Parameters

Modules Parameters
model.backbone.body.conv1.weight 9408
model.backbone.body.layer1.0.conv1.weight 4096
model.backbone.body.layer1.0.conv2.weight 36864
model.backbone.body.layer1.0.conv3.weight 16384
model.backbone.body.layer1.0.downsample.0.weight 16384
model.backbone.body.layer1.1.conv1.weight 16384
model.backbone.body.layer1.1.conv2.weight 36864
model.backbone.body.layer1.1.conv3.weight 16384
model.backbone.body.layer1.2.conv1.weight 16384
model.backbone.body.layer1.2.conv2.weight 36864
model.backbone.body.layer1.2.conv3.weight 16384
model.backbone.body.layer2.0.conv1.weight 32768
model.backbone.body.layer2.0.conv2.weight 147456
model.backbone.body.layer2.0.conv3.weight 65536
model.backbone.body.layer2.0.downsample.0.weight 131072
model.backbone.body.layer2.1.conv1.weight 65536
model.backbone.body.layer2.1.conv2.weight 147456
model.backbone.body.layer2.1.conv3.weight 65536
model.backbone.body.layer2.2.conv1.weight 65536
model.backbone.body.layer2.2.conv2.weight 147456
model.backbone.body.layer2.2.conv3.weight 65536
model.backbone.body.layer2.3.conv1.weight 65536
model.backbone.body.layer2.3.conv2.weight 147456
model.backbone.body.layer2.3.conv3.weight 65536
model.backbone.body.layer3.0.conv1.weight 131072
model.backbone.body.layer3.0.conv2.weight 589824
model.backbone.body.layer3.0.conv3.weight 262144
model.backbone.body.layer3.0.downsample.0.weight 524288
model.backbone.body.layer3.1.conv1.weight 262144
model.backbone.body.layer3.1.conv2.weight 589824
model.backbone.body.layer3.1.conv3.weight 262144
model.backbone.body.layer3.2.conv1.weight 262144
model.backbone.body.layer3.2.conv2.weight 589824
model.backbone.body.layer3.2.conv3.weight 262144
model.backbone.body.layer3.3.conv1.weight 262144
model.backbone.body.layer3.3.conv2.weight 589824
model.backbone.body.layer3.3.conv3.weight 262144
model.backbone.body.layer3.4.conv1.weight 262144
model.backbone.body.layer3.4.conv2.weight 589824
model.backbone.body.layer3.4.conv3.weight 262144
model.backbone.body.layer3.5.conv1.weight 262144
model.backbone.body.layer3.5.conv2.weight 589824
model.backbone.body.layer3.5.conv3.weight 262144
model.backbone.body.layer4.0.conv1.weight 524288
model.backbone.body.layer4.0.conv2.weight 2359296
model.backbone.body.layer4.0.conv3.weight 1048576
model.backbone.body.layer4.0.downsample.0.weight 2097152
model.backbone.body.layer4.1.conv1.weight 1048576
model.backbone.body.layer4.1.conv2.weight 2359296
model.backbone.body.layer4.1.conv3.weight 1048576
model.backbone.body.layer4.2.conv1.weight 1048576
model.backbone.body.layer4.2.conv2.weight 2359296
model.backbone.body.layer4.2.conv3.weight 1048576
model.backbone.fpn.inner_blocks.0.0.weight 65536
model.backbone.fpn.inner_blocks.0.0.bias 256
model.backbone.fpn.inner_blocks.1.0.weight 131072
model.backbone.fpn.inner_blocks.1.0.bias 256
model.backbone.fpn.inner_blocks.2.0.weight 262144
model.backbone.fpn.inner_blocks.2.0.bias 256
model.backbone.fpn.inner_blocks.3.0.weight 524288
model.backbone.fpn.inner_blocks.3.0.bias 256
model.backbone.fpn.layer_blocks.0.0.weight 589824
model.backbone.fpn.layer_blocks.0.0.bias 256
model.backbone.fpn.layer_blocks.1.0.weight 589824
model.backbone.fpn.layer_blocks.1.0.bias 256
model.backbone.fpn.layer_blocks.2.0.weight 589824
model.backbone.fpn.layer_blocks.2.0.bias 256
model.backbone.fpn.layer_blocks.3.0.weight 589824
model.backbone.fpn.layer_blocks.3.0.bias 256
model.rpn.head.conv.0.0.weight 589824
model.rpn.head.conv.0.0.bias 256
model.rpn.head.cls_logits.weight 768
model.rpn.head.cls_logits.bias 3
model.rpn.head.bbox_pred.weight 3072
model.rpn.head.bbox_pred.bias 12
model.roi_heads.box_head.fc6.weight 12845056
model.roi_heads.box_head.fc6.bias 1024
model.roi_heads.box_head.fc7.weight 1048576
model.roi_heads.box_head.fc7.bias 1024
model.roi_heads.box_predictor.cls_score.weight 132096
model.roi_heads.box_predictor.cls_score.bias 129
model.roi_heads.box_predictor.bbox_pred.weight 528384
model.roi_heads.box_predictor.bbox_pred.bias 516

Total Trainable Params: 41 950 036

Dataset

The dataset on HF and on Kaggle in compressed image format used for training consists of a variety of images representing different Russian dishes. Each image is annotated with bounding boxes and labels corresponding to the food items present.

TODO:

  • Make the project modular
  • Finetuning YOLOv10, RT-DETR
  • Configure TensorBoard, wandb
  • Create application
  • Rewrite file with annotations

About

Recognition of Russian food through deep learning

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published