Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ci] [R-package] add unit tests on monotone constraints #4352

Merged
merged 8 commits into from
Jun 15, 2021
149 changes: 149 additions & 0 deletions R-package/tests/testthat/test_basic.R
Original file line number Diff line number Diff line change
Expand Up @@ -2075,3 +2075,152 @@ test_that(paste0("lgb.train() gives same results when using interaction_constrai
expect_equal(pred1, pred2)

})

context("monotone constraints")

.generate_trainset_for_monotone_constraints_tests <- function(x3_to_categorical) {
n_samples <- 3000L
x1_positively_correlated_with_y <- runif(n = n_samples, min = 0.0, max = 1.0)
x2_negatively_correlated_with_y <- runif(n = n_samples, min = 0.0, max = 1.0)
x3_negatively_correlated_with_y <- runif(n = n_samples, min = 0.0, max = 1.0)
if (x3_to_categorical) {
x3_negatively_correlated_with_y <- as.integer(x3_negatively_correlated_with_y / 0.01)
categorical_features <- "feature_3"
} else {
categorical_features <- NULL
}
X <- matrix(
data = c(
x1_positively_correlated_with_y
, x2_negatively_correlated_with_y
, x3_negatively_correlated_with_y
)
, ncol = 3L
)
zs <- rnorm(n = n_samples, mean = 0.0, sd = 0.01)
scales <- 10.0 * (runif(n = 6L, min = 0.0, max = 1.0) + 0.5)
y <- (
scales[1L] * x1_positively_correlated_with_y
+ sin(scales[2L] * pi * x1_positively_correlated_with_y)
- scales[3L] * x2_negatively_correlated_with_y
- cos(scales[4L] * pi * x2_negatively_correlated_with_y)
- scales[5L] * x3_negatively_correlated_with_y
- cos(scales[6L] * pi * x3_negatively_correlated_with_y)
+ zs
)
return(lgb.Dataset(
data = X
, label = y
, categorical_feature = categorical_features
, free_raw_data = FALSE
, colnames = c("feature_1", "feature_2", "feature_3")
))
}

.is_increasing <- function(y) {
return(all(diff(y) >= 0.0))
}

.is_decreasing <- function(y) {
return(all(diff(y) <= 0.0))
}

.is_non_monotone <- function(y) {
return(any(diff(y) < 0.0) & any(diff(y) > 0.0))
}

# R equivalent of numpy.linspace()
.linspace <- function(start_val, stop_val, num) {
weights <- (seq_len(num) - 1L) / (num - 1L)
return(start_val + weights * (stop_val - start_val))
}

.is_correctly_constrained <- function(learner, x3_to_categorical) {
iterations <- 10L
n <- 1000L
variable_x <- .linspace(0L, 1L, n)
fixed_xs_values <- .linspace(0L, 1L, n)
for (i in seq_len(iterations)) {
fixed_x <- fixed_xs_values[i] * rep(1.0, n)
monotonically_increasing_x <- matrix(
data = c(variable_x, fixed_x, fixed_x)
, ncol = 3L
)
monotonically_increasing_y <- predict(
learner
, monotonically_increasing_x
)

monotonically_decreasing_x <- matrix(
data = c(fixed_x, variable_x, fixed_x)
, ncol = 3L
)
monotonically_decreasing_y <- predict(
learner
, monotonically_decreasing_x
)

if (x3_to_categorical) {
non_monotone_data <- c(
fixed_x
, fixed_x
, as.integer(variable_x / 0.01)
)
} else {
non_monotone_data <- c(fixed_x, fixed_x, variable_x)
}
non_monotone_x <- matrix(
data = non_monotone_data
, ncol = 3L
)
non_monotone_y <- predict(
learner
, non_monotone_x
)
if (!(.is_increasing(monotonically_increasing_y) &&
.is_decreasing(monotonically_decreasing_y) &&
.is_non_monotone(non_monotone_y)
)) {
return(FALSE)
}
}
return(TRUE)
}

for (x3_to_categorical in c(TRUE, FALSE)) {
set.seed(708L)
dtrain <- .generate_trainset_for_monotone_constraints_tests(
x3_to_categorical = x3_to_categorical
)
for (monotone_constraints_method in c("basic", "intermediate", "advanced")) {
test_msg <- paste0(
"lgb.train() supports monotone constraints ("
, "categoricals="
, x3_to_categorical
, ", method="
, monotone_constraints_method
, ")"
)
test_that(test_msg, {
params <- list(
min_data = 20L
, num_leaves = 20L
, monotone_constraints = c(1L, -1L, 0L)
, monotone_constraints_method = monotone_constraints_method
, use_missing = FALSE
)
constrained_model <- lgb.train(
params = params
, data = dtrain
, obj = "regression_l2"
, nrounds = 100L
)
expect_true({
.is_correctly_constrained(
learner = constrained_model
, x3_to_categorical = x3_to_categorical
)
})
})
}
}