Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python] replace numpy.zeros with numpy.empty for the speedup #4410

Merged
merged 1 commit into from
Jun 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions python-package/lightgbm/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -780,7 +780,7 @@ def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None)
ptr_data, type_ptr_data, _ = c_float_array(data)
n_preds = self.__get_num_preds(start_iteration, num_iteration, mat.shape[0], predict_type)
if preds is None:
preds = np.zeros(n_preds, dtype=np.float64)
preds = np.empty(n_preds, dtype=np.float64)
elif len(preds.shape) != 1 or len(preds) != n_preds:
raise ValueError("Wrong length of pre-allocated predict array")
out_num_preds = ctypes.c_int64(0)
Expand All @@ -807,7 +807,7 @@ def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None)
# __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal
n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff([0] + list(sections) + [nrow])]
n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum()
preds = np.zeros(sum(n_preds), dtype=np.float64)
preds = np.empty(sum(n_preds), dtype=np.float64)
for chunk, (start_idx_pred, end_idx_pred) in zip(np.array_split(mat, sections),
zip(n_preds_sections, n_preds_sections[1:])):
# avoid memory consumption by arrays concatenation operations
Expand Down Expand Up @@ -868,7 +868,7 @@ def inner_predict(csr, start_iteration, num_iteration, predict_type, preds=None)
nrow = len(csr.indptr) - 1
n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type)
if preds is None:
preds = np.zeros(n_preds, dtype=np.float64)
preds = np.empty(n_preds, dtype=np.float64)
elif len(preds.shape) != 1 or len(preds) != n_preds:
raise ValueError("Wrong length of pre-allocated predict array")
out_num_preds = ctypes.c_int64(0)
Expand Down Expand Up @@ -913,7 +913,7 @@ def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type):
out_ptr_data = ctypes.POINTER(ctypes.c_float)()
else:
out_ptr_data = ctypes.POINTER(ctypes.c_double)()
out_shape = np.zeros(2, dtype=np.int64)
out_shape = np.empty(2, dtype=np.int64)
_safe_call(_LIB.LGBM_BoosterPredictSparseOutput(
self.handle,
ptr_indptr,
Expand Down Expand Up @@ -946,7 +946,7 @@ def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type):
# __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal
n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff(sections)]
n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum()
preds = np.zeros(sum(n_preds), dtype=np.float64)
preds = np.empty(sum(n_preds), dtype=np.float64)
for (start_idx, end_idx), (start_idx_pred, end_idx_pred) in zip(zip(sections, sections[1:]),
zip(n_preds_sections, n_preds_sections[1:])):
# avoid memory consumption by arrays concatenation operations
Expand All @@ -971,7 +971,7 @@ def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type):
out_ptr_data = ctypes.POINTER(ctypes.c_float)()
else:
out_ptr_data = ctypes.POINTER(ctypes.c_double)()
out_shape = np.zeros(2, dtype=np.int64)
out_shape = np.empty(2, dtype=np.int64)
_safe_call(_LIB.LGBM_BoosterPredictSparseOutput(
self.handle,
ptr_indptr,
Expand Down Expand Up @@ -1002,7 +1002,7 @@ def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type):
if predict_type == C_API_PREDICT_CONTRIB:
return inner_predict_sparse(csc, start_iteration, num_iteration, predict_type)
n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type)
preds = np.zeros(n_preds, dtype=np.float64)
preds = np.empty(n_preds, dtype=np.float64)
out_num_preds = ctypes.c_int64(0)

ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr)
Expand Down Expand Up @@ -1176,15 +1176,15 @@ def _set_init_score_by_predictor(self, predictor, data, used_indices=None):
if used_indices is not None:
assert not self.need_slice
if isinstance(data, str):
sub_init_score = np.zeros(num_data * predictor.num_class, dtype=np.float32)
sub_init_score = np.empty(num_data * predictor.num_class, dtype=np.float32)
assert num_data == len(used_indices)
for i in range(len(used_indices)):
for j in range(predictor.num_class):
sub_init_score[i * predictor.num_class + j] = init_score[used_indices[i] * predictor.num_class + j]
init_score = sub_init_score
if predictor.num_class > 1:
# need to regroup init_score
new_init_score = np.zeros(init_score.size, dtype=np.float32)
new_init_score = np.empty(init_score.size, dtype=np.float32)
for i in range(num_data):
for j in range(predictor.num_class):
new_init_score[j * num_data + i] = init_score[i * predictor.num_class + j]
Expand Down Expand Up @@ -1320,7 +1320,7 @@ def __init_from_np2d(self, mat, params_str, ref_dataset):
def __init_from_list_np2d(self, mats, params_str, ref_dataset):
"""Initialize data from a list of 2-D numpy matrices."""
ncol = mats[0].shape[1]
nrow = np.zeros((len(mats),), np.int32)
nrow = np.empty((len(mats),), np.int32)
if mats[0].dtype == np.float64:
ptr_data = (ctypes.POINTER(ctypes.c_double) * len(mats))()
else:
Expand Down Expand Up @@ -3310,7 +3310,7 @@ def feature_importance(self, importance_type='split', iteration=None):
if iteration is None:
iteration = self.best_iteration
importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type]
result = np.zeros(self.num_feature(), dtype=np.float64)
result = np.empty(self.num_feature(), dtype=np.float64)
_safe_call(_LIB.LGBM_BoosterFeatureImportance(
self.handle,
ctypes.c_int(iteration),
Expand Down Expand Up @@ -3397,7 +3397,7 @@ def __inner_eval(self, data_name, data_idx, feval=None):
self.__get_eval_info()
ret = []
if self.__num_inner_eval > 0:
result = np.zeros(self.__num_inner_eval, dtype=np.float64)
result = np.empty(self.__num_inner_eval, dtype=np.float64)
tmp_out_len = ctypes.c_int(0)
_safe_call(_LIB.LGBM_BoosterGetEval(
self.handle,
Expand Down Expand Up @@ -3437,7 +3437,7 @@ def __inner_predict(self, data_idx):
n_preds = self.train_set.num_data() * self.__num_class
else:
n_preds = self.valid_sets[data_idx - 1].num_data() * self.__num_class
self.__inner_predict_buffer[data_idx] = np.zeros(n_preds, dtype=np.float64)
self.__inner_predict_buffer[data_idx] = np.empty(n_preds, dtype=np.float64)
# avoid to predict many time in one iteration
if not self.__is_predicted_cur_iter[data_idx]:
tmp_out_len = ctypes.c_int64(0)
Expand Down
6 changes: 3 additions & 3 deletions python-package/lightgbm/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ def _make_n_folds(full_data, folds, nfold, params, seed, fpreproc=None, stratifi
flatted_group = np.repeat(range(len(group_info)), repeats=group_info)
else:
flatted_group = np.zeros(num_data, dtype=np.int32)
folds = folds.split(X=np.zeros(num_data), y=full_data.get_label(), groups=flatted_group)
folds = folds.split(X=np.empty(num_data), y=full_data.get_label(), groups=flatted_group)
else:
if any(params.get(obj_alias, "") in {"lambdarank", "rank_xendcg", "xendcg",
"xe_ndcg", "xe_ndcg_mart", "xendcg_mart"}
Expand All @@ -344,12 +344,12 @@ def _make_n_folds(full_data, folds, nfold, params, seed, fpreproc=None, stratifi
group_info = np.array(full_data.get_group(), dtype=np.int32, copy=False)
flatted_group = np.repeat(range(len(group_info)), repeats=group_info)
group_kfold = _LGBMGroupKFold(n_splits=nfold)
folds = group_kfold.split(X=np.zeros(num_data), groups=flatted_group)
folds = group_kfold.split(X=np.empty(num_data), groups=flatted_group)
elif stratified:
if not SKLEARN_INSTALLED:
raise LightGBMError('scikit-learn is required for stratified cv')
skf = _LGBMStratifiedKFold(n_splits=nfold, shuffle=shuffle, random_state=seed)
folds = skf.split(X=np.zeros(num_data), y=full_data.get_label())
folds = skf.split(X=np.empty(num_data), y=full_data.get_label())
else:
if shuffle:
randidx = np.random.RandomState(seed).permutation(num_data)
Expand Down
2 changes: 1 addition & 1 deletion tests/c_api_test/test_.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,7 +268,7 @@ def test_booster():
for line in inp.readlines():
data.append([float(x) for x in line.split('\t')[1:]])
mat = np.array(data, dtype=np.float64)
preb = np.zeros(mat.shape[0], dtype=np.float64)
preb = np.empty(mat.shape[0], dtype=np.float64)
num_preb = ctypes.c_int64(0)
data = np.array(mat.reshape(mat.size), dtype=np.float64, copy=False)
LIB.LGBM_BoosterPredictForMat(
Expand Down
8 changes: 3 additions & 5 deletions tests/python_package_test/test_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -1441,9 +1441,8 @@ def test_max_bin_by_feature():
def test_small_max_bin():
np.random.seed(0)
y = np.random.choice([0, 1], 100)
x = np.zeros((100, 1))
x = np.ones((100, 1))
x[:30, 0] = -1
x[30:60, 0] = 1
x[60:, 0] = 2
params = {'objective': 'binary',
'seed': 0,
Expand Down Expand Up @@ -2259,7 +2258,7 @@ def test_node_level_subcol():


def test_forced_bins():
x = np.zeros((100, 2))
x = np.empty((100, 2))
x[:, 0] = np.arange(0, 1, 0.01)
x[:, 1] = -np.arange(0, 1, 0.01)
y = np.arange(0, 1, 0.01)
Expand All @@ -2275,7 +2274,6 @@ def test_forced_bins():
est = lgb.train(params, lgb_x, num_boost_round=20)
new_x = np.zeros((3, x.shape[1]))
new_x[:, 0] = [0.31, 0.37, 0.41]
new_x[:, 1] = [0, 0, 0]
predicted = est.predict(new_x)
assert len(np.unique(predicted)) == 3
new_x[:, 0] = [0, 0, 0]
Expand All @@ -2300,7 +2298,7 @@ def test_forced_bins():

def test_binning_same_sign():
# test that binning works properly for features with only positive or only negative values
x = np.zeros((99, 2))
x = np.empty((99, 2))
x[:, 0] = np.arange(0.01, 1, 0.01)
x[:, 1] = -np.arange(0.01, 1, 0.01)
y = np.arange(0.01, 1, 0.01)
Expand Down