Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RFC][python] deprecate silent and standalone verbose args. Prefer global verbose param #4577

Merged
merged 3 commits into from
Sep 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 19 additions & 5 deletions python-package/lightgbm/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -1123,7 +1123,7 @@ class Dataset:
"""Dataset in LightGBM."""

def __init__(self, data, label=None, reference=None,
weight=None, group=None, init_score=None, silent=False,
weight=None, group=None, init_score=None, silent='warn',
feature_name='auto', categorical_feature='auto', params=None,
free_raw_data=True):
"""Initialize Dataset.
Expand Down Expand Up @@ -1439,6 +1439,11 @@ def _lazy_init(self, data, label=None, reference=None,
_log_warning(f'{key} keyword has been found in `params` and will be ignored.\n'
f'Please use {key} argument of the Dataset constructor to pass this parameter.')
# user can set verbose with params, it has higher priority
if silent != "warn":
_log_warning("'silent' argument is deprecated and will be removed in a future release of LightGBM. "
"Pass 'verbose' parameter via 'params' instead.")
else:
silent = False
if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent:
params["verbose"] = -1
# get categorical features
Expand Down Expand Up @@ -1769,7 +1774,7 @@ def construct(self):
return self

def create_valid(self, data, label=None, weight=None, group=None,
init_score=None, silent=False, params=None):
init_score=None, silent='warn', params=None):
"""Create validation data align with current Dataset.

Parameters
Expand Down Expand Up @@ -2462,7 +2467,7 @@ def _dump_text(self, filename):
class Booster:
"""Booster in LightGBM."""

def __init__(self, params=None, train_set=None, model_file=None, model_str=None, silent=False):
def __init__(self, params=None, train_set=None, model_file=None, model_str=None, silent='warn'):
"""Initialize the Booster.

Parameters
Expand All @@ -2488,6 +2493,11 @@ def __init__(self, params=None, train_set=None, model_file=None, model_str=None,
self.best_score = {}
params = {} if params is None else deepcopy(params)
# user can set verbose with params, it has higher priority
if silent != 'warn':
_log_warning("'silent' argument is deprecated and will be removed in a future release of LightGBM. "
"Pass 'verbose' parameter via 'params' instead.")
else:
silent = False
if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent:
params["verbose"] = -1
if train_set is not None:
Expand Down Expand Up @@ -2574,7 +2584,7 @@ def __init__(self, params=None, train_set=None, model_file=None, model_str=None,
self.__num_class = out_num_class.value
self.pandas_categorical = _load_pandas_categorical(file_name=model_file)
elif model_str is not None:
self.model_from_string(model_str, not silent)
self.model_from_string(model_str, verbose="_silent_false")
else:
raise TypeError('Need at least one training dataset or model file or model string '
'to create Booster instance')
Expand Down Expand Up @@ -3255,7 +3265,7 @@ def shuffle_models(self, start_iteration=0, end_iteration=-1):
ctypes.c_int(end_iteration)))
return self

def model_from_string(self, model_str, verbose=True):
def model_from_string(self, model_str, verbose='warn'):
"""Load Booster from a string.

Parameters
Expand Down Expand Up @@ -3283,6 +3293,10 @@ def model_from_string(self, model_str, verbose=True):
_safe_call(_LIB.LGBM_BoosterGetNumClasses(
self.handle,
ctypes.byref(out_num_class)))
if verbose in {'warn', '_silent_false'}:
verbose = verbose == 'warn'
else:
_log_warning("'verbose' argument is deprecated and will be removed in a future release of LightGBM.")
if verbose:
_log_info(f'Finished loading model, total used {int(out_num_iterations.value)} iterations')
Comment on lines 3300 to 3301
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For this one, I don't think one log line deserves a standalone argument. Users are able to get number of iterations after constructing a Booster if needed.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

agree! (sorry I missed commenting on this in my previous review)

self.__num_class = out_num_class.value
Expand Down
6 changes: 3 additions & 3 deletions python-package/lightgbm/dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -1108,7 +1108,7 @@ def __init__(
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
n_jobs: int = -1,
silent: bool = True,
silent: bool = "warn",
importance_type: str = 'split',
client: Optional[Client] = None,
**kwargs: Any
Expand Down Expand Up @@ -1288,7 +1288,7 @@ def __init__(
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
n_jobs: int = -1,
silent: bool = True,
silent: bool = "warn",
importance_type: str = 'split',
client: Optional[Client] = None,
**kwargs: Any
Expand Down Expand Up @@ -1448,7 +1448,7 @@ def __init__(
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
n_jobs: int = -1,
silent: bool = True,
silent: bool = "warn",
importance_type: str = 'split',
client: Optional[Client] = None,
**kwargs: Any
Expand Down
2 changes: 1 addition & 1 deletion python-package/lightgbm/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ def train(
for dataset_name, eval_name, score, _ in evaluation_result_list:
booster.best_score[dataset_name][eval_name] = score
if not keep_training_booster:
booster.model_from_string(booster.model_to_string(), False).free_dataset()
booster.model_from_string(booster.model_to_string(), verbose='_silent_false').free_dataset()
return booster


Expand Down
10 changes: 8 additions & 2 deletions python-package/lightgbm/sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,7 +369,7 @@ def __init__(
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
n_jobs: int = -1,
silent: bool = True,
silent: Union[bool, str] = 'warn',
importance_type: str = 'split',
**kwargs
):
Expand Down Expand Up @@ -590,7 +590,13 @@ def fit(self, X, y,
evals_result = {}
params = self.get_params()
# user can set verbose with kwargs, it has higher priority
if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and self.silent:
if self.silent != "warn":
_log_warning("'silent' argument is deprecated and will be removed in a future release of LightGBM. "
"Pass 'verbose' parameter via keyword arguments instead.")
silent = self.silent
else:
silent = True
if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent:
params['verbose'] = -1
params.pop('silent', None)
params.pop('importance_type', None)
Expand Down