Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add 'nrounds' as an alias for 'num_iterations' (fixes #4743) #4746

Merged
merged 5 commits into from
Nov 11, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions R-package/R/aliases.R
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@
, "num_trees"
, "num_round"
, "num_rounds"
, "nrounds"
, "num_boost_round"
, "n_estimators"
, "max_iter"
Expand Down
132 changes: 132 additions & 0 deletions R-package/tests/testthat/test_basic.R
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,68 @@ test_that("lightgbm() rejects negative or 0 value passed to nrounds", {
}
})

test_that("lightgbm() accepts nrounds as either a top-level argument or parameter", {
jameslamb marked this conversation as resolved.
Show resolved Hide resolved
nrounds <- 15L

set.seed(708L)
top_level_bst <- lightgbm(
data = train$data
, label = train$label
, nrounds = nrounds
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
)
, save_name = tempfile(fileext = ".model")
)

set.seed(708L)
param_bst <- lightgbm(
data = train$data
, label = train$label
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
, nrounds = nrounds
)
, save_name = tempfile(fileext = ".model")
)

set.seed(708L)
both_customized <- lightgbm(
data = train$data
, label = train$label
, nrounds = 20L
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
, nrounds = nrounds
)
, save_name = tempfile(fileext = ".model")
)

top_level_l2 <- top_level_bst$eval_train()[[1L]][["value"]]
params_l2 <- param_bst$eval_train()[[1L]][["value"]]
both_l2 <- both_customized$eval_train()[[1L]][["value"]]

# check type just to be sure the subsetting didn't return a NULL
expect_true(is.numeric(top_level_l2))
expect_true(is.numeric(params_l2))
expect_true(is.numeric(both_l2))

# check that model produces identical performance
expect_identical(top_level_l2, params_l2)
expect_identical(both_l2, params_l2)

expect_identical(param_bst$current_iter(), top_level_bst$current_iter())
jameslamb marked this conversation as resolved.
Show resolved Hide resolved
expect_identical(param_bst$current_iter(), both_customized$current_iter())
expect_identical(param_bst$current_iter(), nrounds)

})

test_that("lightgbm() performs evaluation on validation sets if they are provided", {
set.seed(708L)
dvalid1 <- lgb.Dataset(
Expand Down Expand Up @@ -467,6 +529,76 @@ test_that("lgb.train() rejects negative or 0 value passed to nrounds", {
}
})


test_that("lgb.train() accepts nrounds as either a top-level argument or parameter", {
nrounds <- 15L

set.seed(708L)
top_level_bst <- lgb.train(
data = lgb.Dataset(
train$data
, label = train$label
)
, nrounds = nrounds
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
, save_name = tempfile(fileext = ".model")
)
)

set.seed(708L)
param_bst <- lgb.train(
data = lgb.Dataset(
train$data
, label = train$label
)
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
, nrounds = nrounds
, save_name = tempfile(fileext = ".model")
)
)

set.seed(708L)
both_customized <- lgb.train(
data = lgb.Dataset(
train$data
, label = train$label
)
, nrounds = 20L
, params = list(
objective = "regression"
, metric = "l2"
, num_leaves = 5L
, nrounds = nrounds
, save_name = tempfile(fileext = ".model")
)
)

top_level_l2 <- top_level_bst$eval_train()[[1L]][["value"]]
params_l2 <- param_bst$eval_train()[[1L]][["value"]]
both_l2 <- both_customized$eval_train()[[1L]][["value"]]

# check type just to be sure the subsetting didn't return a NULL
expect_true(is.numeric(top_level_l2))
expect_true(is.numeric(params_l2))
expect_true(is.numeric(both_l2))

# check that model produces identical performance
expect_identical(top_level_l2, params_l2)
expect_identical(both_l2, params_l2)

expect_identical(param_bst$current_iter(), top_level_bst$current_iter())
expect_identical(param_bst$current_iter(), both_customized$current_iter())
expect_identical(param_bst$current_iter(), nrounds)

})


test_that("lgb.train() throws an informative error if 'data' is not an lgb.Dataset", {
bad_values <- list(
4L
Expand Down
2 changes: 1 addition & 1 deletion docs/Parameters.rst
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ Core Parameters

- **Note**: can be used only in CLI version

- ``num_iterations`` :raw-html:`<a id="num_iterations" title="Permalink to this parameter" href="#num_iterations">&#x1F517;&#xFE0E;</a>`, default = ``100``, type = int, aliases: ``num_iteration``, ``n_iter``, ``num_tree``, ``num_trees``, ``num_round``, ``num_rounds``, ``num_boost_round``, ``n_estimators``, ``max_iter``, constraints: ``num_iterations >= 0``
- ``num_iterations`` :raw-html:`<a id="num_iterations" title="Permalink to this parameter" href="#num_iterations">&#x1F517;&#xFE0E;</a>`, default = ``100``, type = int, aliases: ``num_iteration``, ``n_iter``, ``num_tree``, ``num_trees``, ``num_round``, ``num_rounds``, ``nrounds``, ``num_boost_round``, ``n_estimators``, ``max_iter``, constraints: ``num_iterations >= 0``

- number of boosting iterations

Expand Down
2 changes: 1 addition & 1 deletion include/LightGBM/config.h
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ struct Config {
// desc = **Note**: can be used only in CLI version
std::vector<std::string> valid;

// alias = num_iteration, n_iter, num_tree, num_trees, num_round, num_rounds, num_boost_round, n_estimators, max_iter
// alias = num_iteration, n_iter, num_tree, num_trees, num_round, num_rounds, nrounds, num_boost_round, n_estimators, max_iter
// check = >=0
// desc = number of boosting iterations
// desc = **Note**: internally, LightGBM constructs ``num_class * num_iterations`` trees for multi-class classification problems
Expand Down
1 change: 1 addition & 0 deletions python-package/lightgbm/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,6 +386,7 @@ class _ConfigAliases:
"num_trees",
"num_round",
"num_rounds",
"nrounds",
"num_boost_round",
"n_estimators",
"max_iter"},
Expand Down
1 change: 1 addition & 0 deletions src/io/config_auto.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ const std::unordered_map<std::string, std::string>& Config::alias_table() {
{"num_trees", "num_iterations"},
{"num_round", "num_iterations"},
{"num_rounds", "num_iterations"},
{"nrounds", "num_iterations"},
{"num_boost_round", "num_iterations"},
{"n_estimators", "num_iterations"},
{"max_iter", "num_iterations"},
Expand Down