-
Notifications
You must be signed in to change notification settings - Fork 93
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
169 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT license. | ||
|
||
import os | ||
import time | ||
import torch | ||
import torch.optim as optim | ||
import torch.nn.functional as F | ||
import torch.distributed as dist | ||
from torch import nn | ||
import argparse | ||
import deepspeed | ||
|
||
import logging | ||
logging.basicConfig(level=logging.INFO) | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument('--local_rank', type=int, default=-1) | ||
parser.add_argument('--batch_size', type=int, default=16) | ||
parser.add_argument('--num_tokens', type=int, default=1024) | ||
parser.add_argument('--model_dim', type=int, default=2048) | ||
parser.add_argument('--hidden_size', type=int, default=2048) | ||
parser.add_argument('--num_local_experts', type=int, default=2) | ||
parser.add_argument('--dtype', type=str, default='float32') | ||
parser.add_argument('--fp32_gate', default=False, action='store_true') | ||
parser.add_argument('--top', type=int, default=2) | ||
args = parser.parse_args() | ||
|
||
if args.local_rank < 0: | ||
args.local_rank = int(os.environ.get('LOCAL_RANK', 0)) | ||
|
||
torch.cuda.set_device(args.local_rank) | ||
|
||
try: | ||
if dist.is_available(): | ||
dist.init_process_group('nccl') | ||
dist_rank = dist.get_rank() | ||
dist_world_size = dist.get_world_size() | ||
|
||
def dist_print(*args): | ||
if dist_rank == 0: | ||
print(*args) | ||
except: | ||
dist_rank = 0 | ||
dist_world_size = 1 | ||
dist_print = print | ||
|
||
batch_size = args.batch_size | ||
num_tokens = args.num_tokens | ||
model_dim = args.model_dim | ||
hidden_size = args.hidden_size | ||
num_local_experts = args.num_local_experts | ||
top_value = args.top | ||
local_rank = args.local_rank | ||
|
||
|
||
device = torch.device('cuda', args.local_rank) | ||
|
||
if args.dtype == 'float32': | ||
torch.set_default_dtype(torch.float32) | ||
elif args.dtype == 'float16': | ||
torch.set_default_dtype(torch.float16) | ||
elif args.dtype == 'bfloat16': | ||
torch.set_default_dtype(torch.bfloat16) | ||
else: | ||
raise Exception('Unrecognized data type specified: %s' % args.dtype) | ||
|
||
deepspeed.init_distributed() | ||
deepspeed.utils.groups.initialize(ep_size=dist_world_size) | ||
|
||
class ExpertModel(torch.nn.Module): | ||
def __init__(self, model_dim, hidden_size, activation_fn): | ||
super().__init__() | ||
self.fc1 = torch.nn.Linear(model_dim, hidden_size, bias=True) | ||
self.fc2 = torch.nn.Linear(hidden_size, model_dim, bias=True) | ||
self.activation_fn = activation_fn | ||
def forward(self, x): | ||
x = self.fc1(x) | ||
x = self.activation_fn(x) | ||
x = self.fc2(x) | ||
return x | ||
|
||
class ExampleModel(torch.nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
|
||
self._moe_layer = deepspeed.moe.layer.MoE( | ||
hidden_size = hidden_size, | ||
expert = ExpertModel(model_dim, hidden_size, lambda x: F.relu(x)), | ||
num_experts = num_local_experts * dist_world_size, | ||
k = top_value | ||
).to(device) | ||
|
||
for name, param in self._moe_layer.named_parameters(): | ||
if '.experts.' in name: | ||
setattr(param, 'skip_allreduce', True) | ||
|
||
# Distinguish different parameter types: gate, local_experts | ||
local_count = sum([torch.numel(param) for name, param in self._moe_layer.named_parameters() if '.experts.' in name]) | ||
shared_count = sum([torch.numel(param) for name, param in self._moe_layer.named_parameters() if '.gate.' in name]) | ||
dist_print('[Statistics] param count for MoE local_experts = %s, param count for MoE gate = %s.\n' % (local_count, shared_count)) | ||
|
||
def forward(self, input): | ||
result, _, _ = self._moe_layer(input) | ||
result = F.log_softmax(torch.sum(result, dim=2), dim=1) | ||
return result | ||
|
||
model = ExampleModel() | ||
dist_print(model) | ||
|
||
optimizer = torch.optim.SGD(model.parameters(), lr=1e-5) | ||
|
||
x = torch.randn([batch_size, num_tokens, model_dim], device=device, requires_grad=True) | ||
y = torch.LongTensor(batch_size).random_(1).to(device) | ||
|
||
tuples = (dist_world_size, args.dtype, model_dim, hidden_size, batch_size * num_tokens, num_local_experts, top_value, device) | ||
dist_print('[Benchmark] world_size = %s, dtype = %s, model_dim = %s, hidden_size = %s, samples = %s, num_local_experts = %s, topK = %s, device = `%s`' % tuples) | ||
|
||
average_time, num_steps = 0, 100 | ||
|
||
params_for_all_reduce = [p for p in model.parameters() if not hasattr(p, 'skip_allreduce') and getattr(p, 'requires_grad', False)] | ||
|
||
for i in range(num_steps): | ||
|
||
torch.cuda.synchronize() | ||
t_start = time.time() | ||
optimizer.zero_grad() | ||
|
||
output = model(x) | ||
loss = F.nll_loss(output, y) | ||
loss.backward() | ||
if dist_world_size > 1: | ||
for p in params_for_all_reduce: | ||
p.grad /= dist_world_size | ||
dist.all_reduce(p.grad) | ||
optimizer.step() | ||
|
||
torch.cuda.synchronize() | ||
t_stop = time.time() | ||
dist_print('STEP-%s: DONE, loss = %s, step_time = %s sec.' % (i, float(loss.data), t_stop - t_start)) | ||
|
||
if i + 10 >= num_steps: | ||
average_time += t_stop - t_start | ||
|
||
average_time /= 10 | ||
dist_print('\n[Summary] Average synchronized step_time = %s sec.' % average_time) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters