-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
506 lines (457 loc) · 21.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import os
import random
import time
from collections import namedtuple
from copy import deepcopy
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.utils
from torch.utils.data import ConcatDataset, DataLoader, DistributedSampler
import util.dist as dist
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from datasets.coco_eval import CocoEvaluator
from datasets.flickr_eval import FlickrEvaluator, FlickrCaptionEvaluator
from datasets.refexp import RefExpEvaluator
from engine import evaluate, train_one_epoch
from models import build_model
from models.postprocessors import build_postprocessors
def get_args_parser():
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
# Dataset specific
parser.add_argument("--dataset_config", default=None, required=True)
parser.add_argument("--unitab_pretrain", action="store_true", help="Whether to do the simvlm like split text pretrain; now mainly use in dataloader IO text generation")
parser.add_argument("--pretrain_seqcrop", default="mixed", type=str, help="How to crop the sequence during unitab pretraining. first, rand, \
, grounding, or mixed (first+grounding)")
parser.add_argument("--do_caption", action="store_true", help="Whether to do text generation")
parser.add_argument("--do_flickrgrounding", action="store_true", help="a high level key for the flickr grounding experiments; \
will need keys --dataset_config configs/flickr.json, without --do_caption --no_detection")
parser.add_argument("--no_detection", action="store_true", help="Whether to train the detector")
parser.add_argument(
"--combine_datasets", nargs="+", help="List of datasets to combine for training", default=["flickr"]
)
parser.add_argument(
"--combine_datasets_val", nargs="+", help="List of datasets to combine for eval", default=["flickr"]
)
parser.add_argument("--coco_path", type=str, default="")
parser.add_argument("--vg_img_path", type=str, default="")
parser.add_argument("--vg_ann_path", type=str, default="")
# Training hyper-parameters
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--text_encoder_lr", default=5e-5, type=float)
parser.add_argument("--batch_size", default=2, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--epochs", default=40, type=int)
parser.add_argument("--lr_drop", default=35, type=int)
parser.add_argument("--optimizer", default="adam", type=str)
parser.add_argument("--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm")
parser.add_argument(
"--eval_skip",
default=1,
type=int,
help='do evaluation every "eval_skip" frames',
)
parser.add_argument(
"--schedule",
default="linear_with_warmup",
type=str,
choices=("step", "multistep", "linear_with_warmup", "all_linear_with_warmup"),
)
parser.add_argument("--ema", action="store_true")
parser.add_argument("--ema_decay", type=float, default=0.9998)
parser.add_argument("--fraction_warmup_steps", default=0.01, type=float, help="Fraction of total number of steps")
# Model parameters
parser.add_argument(
"--frozen_weights",
type=str,
default=None,
help="Path to the pretrained model. If set, only the mask head will be trained",
)
parser.add_argument(
"--freeze_text_encoder", action="store_true", help="Whether to freeze the weights of the text encoder"
)
parser.add_argument(
"--text_encoder_type",
default="roberta-base",
choices=("roberta-base"),
)
# Backbone
parser.add_argument(
"--backbone",
default="resnet101",
type=str,
help="Name of the convolutional backbone",
)
parser.add_argument(
"--position_embedding",
default="sine",
type=str,
choices=("sine", "learned"),
help="Type of positional embedding to use on top of the image features",
)
# Transformer
parser.add_argument(
"--enc_layers",
default=6,
type=int,
help="Number of encoding layers in the transformer",
)
parser.add_argument(
"--dec_layers",
default=6,
type=int,
help="Number of decoding layers in the transformer",
)
parser.add_argument(
"--dim_feedforward",
default=2048,
type=int,
help="Intermediate size of the feedforward layers in the transformer blocks",
)
parser.add_argument(
"--hidden_dim",
default=256,
type=int,
help="Size of the embeddings (dimension of the transformer)",
)
parser.add_argument("--dropout", default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument(
"--nheads",
default=8,
type=int,
help="Number of attention heads inside the transformer's attentions",
)
parser.add_argument("--max_decoding_step", default=256, type=int, help="max_decoding_step for text generation")
parser.add_argument("--num_queries", default=200, type=int, help="Number of object tokens")
parser.add_argument("--pre_norm", action="store_true")
# Run specific
parser.add_argument("--test", action="store_true", help="Whether to run evaluation on val or test set")
parser.add_argument("--test_type", type=str, default="test", choices=("testA", "testB", "test"))
parser.add_argument("--output-dir", default="", help="path where to save, empty for no saving")
parser.add_argument("--device", default="cuda", help="device to use for training / testing")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--load", default="", help="resume from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument("--eval", action="store_true", help="Only run evaluation")
parser.add_argument("--num_workers", default=5, type=int)
# Distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
return parser
def main(args):
# Init distributed mode
dist.init_distributed_mode(args)
# Update dataset specific configs
if args.dataset_config is not None:
# https://stackoverflow.com/a/16878364
d = vars(args)
with open(args.dataset_config, "r") as f:
cfg = json.load(f)
d.update(cfg)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
output_dir = Path(args.output_dir)
# fix the seed for reproducibility
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.set_deterministic(True)
# Build the model
model, criterion, weight_dict = build_model(args)
model.to(device)
# Get a copy of the model for exponential moving averaged version of the model
model_ema = deepcopy(model) if args.ema else None
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
# Set up optimizers
param_dicts = [
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and "text_encoder" not in n and p.requires_grad
]
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "text_encoder" in n and p.requires_grad],
"lr": args.text_encoder_lr,
},
]
if args.optimizer == "sgd":
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optimizer in ["adam", "adamw"]:
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
else:
raise RuntimeError(f"Unsupported optimizer {args.optimizer}")
# Train dataset
if len(args.combine_datasets) == 0 and not args.eval:
raise RuntimeError("Please provide at least one training dataset")
dataset_train, sampler_train, data_loader_train = None, None, None
if not args.eval:
#### temporal solution for update refexp_dataset_name and GT_type for multi-task finetuning
if type(args.refexp_dataset_name)==type([]):
gttype_cache, refexpname_cache = args.GT_type, args.refexp_dataset_name
flickr_img_path_cache, coco_path_cache = args.flickr_img_path, args.coco_path
dataset_list = []
for ii in range(len(args.combine_datasets)):
name, gttype, refexpname = args.combine_datasets[ii], gttype_cache[ii], refexpname_cache[ii]
args.GT_type = gttype
args.refexp_dataset_name = refexpname
args.flickr_img_path = flickr_img_path_cache[ii]
args.coco_path = coco_path_cache[ii]
dataset_list.append(build_dataset(name, image_set="train", args=args))
print(len(dataset_list[-1]),name,args.GT_type,args.refexp_dataset_name)
dataset_train = ConcatDataset(dataset_list)
args.GT_type, args.refexp_dataset_name = "merged_karpathy", "refcocog"
args.flickr_img_path, args.coco_path = "data/Flickr30k/flickr30k_images_split/train", "data/coco"
else:
dataset_train = ConcatDataset(
[build_dataset(name, image_set="train", args=args) for name in args.combine_datasets]
)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
drop_last=False,
collate_fn=partial(utils.collate_fn, False),
num_workers=args.num_workers,
)
# Val dataset
if len(args.combine_datasets_val) == 0:
raise RuntimeError("Please provide at leas one validation dataset")
Val_all = namedtuple(typename="val_data", field_names=["dataset_name", "dataloader", "base_ds", "evaluator_list"])
#### temporal solution for update refexp_dataset_name and GT_type for multi-task finetuning
if type(args.refexp_dataset_name)==type([]):
assert("multitask" in args.dataset_config)
args.GT_type, args.refexp_dataset_name = "merged_karpathy", "refcocog"
args.flickr_img_path, args.coco_path = "data/Flickr30k/flickr30k_images_split/train", "data/coco"
val_tuples = []
for dset_name in args.combine_datasets_val:
dset = build_dataset(dset_name, image_set="val", args=args)
sampler = (
DistributedSampler(dset, shuffle=False) if args.distributed else torch.utils.data.SequentialSampler(dset)
)
dataloader = DataLoader(
dset,
args.batch_size,
sampler=sampler,
drop_last=False,
collate_fn=partial(utils.collate_fn, False),
num_workers=args.num_workers,
)
base_ds = get_coco_api_from_dataset(dset)
val_tuples.append(Val_all(dataset_name=dset_name, dataloader=dataloader, base_ds=base_ds, evaluator_list=None))
if args.frozen_weights is not None:
if args.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location="cpu", check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location="cpu")
if "model_ema" in checkpoint and checkpoint["model_ema"] is not None:
model_without_ddp.detr.load_state_dict(checkpoint["model_ema"], strict=False)
else:
model_without_ddp.detr.load_state_dict(checkpoint["model"], strict=False)
if args.ema:
model_ema = deepcopy(model_without_ddp)
# Used for loading weights from another model and starting a training from scratch. Especially useful if
# loading into a model with different functionality.
if args.load:
print("loading from", args.load)
if args.load.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(args.load, map_location="cpu", check_hash=True)
else:
checkpoint = torch.load(args.load, map_location="cpu")
if "model_ema" in checkpoint:
model_without_ddp.load_state_dict(checkpoint["model_ema"], strict=False)
else:
model_without_ddp.load_state_dict(checkpoint["model"], strict=False)
if args.ema:
model_ema = deepcopy(model_without_ddp)
# Used for resuming training from the checkpoint of a model. Used when training times-out or is pre-empted.
if args.resume:
if args.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location="cpu", check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
if not args.eval and "optimizer" in checkpoint and "epoch" in checkpoint:
optimizer.load_state_dict(checkpoint["optimizer"])
args.start_epoch = checkpoint["epoch"] + 1
if args.ema:
if "model_ema" not in checkpoint:
print("WARNING: ema model not found in checkpoint, resetting to current model")
model_ema = deepcopy(model_without_ddp)
else:
model_ema.load_state_dict(checkpoint["model_ema"])
def build_evaluator_list(base_ds, dataset_name, do_caption):
"""Helper function to build the list of evaluators for a given dataset"""
evaluator_list = []
if "flickr" in dataset_name and do_caption:
evaluator_list.append(
FlickrCaptionEvaluator(
args.flickr_dataset_path,
subset="test" if args.test else "val",
merge_boxes=args.GT_type == "merged",
exp_id=args.output_dir
)
)
if args.no_detection:
return evaluator_list
iou_types = ["bbox"]
evaluator_list.append(CocoEvaluator(base_ds, tuple(iou_types), useCats=False))
if "refexp" in dataset_name:
evaluator_list.append(RefExpEvaluator(base_ds, ("bbox")))
if "flickr" in dataset_name:
evaluator_list.append(
FlickrEvaluator(
args.flickr_dataset_path,
subset="test" if args.test else "val",
merge_boxes=args.GT_type == "merged",
)
)
return evaluator_list
# Runs only evaluation, by default on the validation set unless --test is passed.
if args.eval:
test_stats = {}
test_model = model_ema if model_ema is not None else model
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name, args.do_caption)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=test_model,
criterion=criterion,
postprocessors=postprocessors,
weight_dict=weight_dict,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
log_stats = {
**{f"test_{k}": v for k, v in test_stats.items()},
"n_parameters": n_parameters,
}
print(log_stats)
return
# Runs training and evaluates after every --eval_skip epochs
print("Start training")
start_time = time.time()
best_metric = 0.0
for epoch in range(args.start_epoch, args.epochs):
print(f"Starting epoch {epoch}")
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model=model,
criterion=criterion,
data_loader=data_loader_train,
weight_dict=weight_dict,
optimizer=optimizer,
device=device,
epoch=epoch,
args=args,
max_norm=args.clip_max_norm,
model_ema=model_ema,
)
if args.output_dir:
checkpoint_paths = [output_dir / "checkpoint.pth"]
# extra checkpoint before LR drop and every 2 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 2 == 0:
checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth")
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model_without_ddp.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"args": args,
},
checkpoint_path,
)
if epoch % args.eval_skip == 0:
test_stats = {}
test_model = model_ema if model_ema is not None else model
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name, args.do_caption)
item = item._replace(evaluator_list=evaluator_list)
postprocessors = build_postprocessors(args, item.dataset_name)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=test_model,
criterion=criterion,
postprocessors=postprocessors,
weight_dict=weight_dict,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
else:
test_stats = {}
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
"epoch": epoch,
"n_parameters": n_parameters,
}
if args.output_dir and dist.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if epoch % args.eval_skip == 0:
if args.do_caption:
metric = metric_stats["CIDEr"]
else:
metric = np.mean([v[1] for k, v in test_stats.items() if "coco_eval_bbox" in k])
if args.output_dir and metric > best_metric:
best_metric = metric
checkpoint_paths = [output_dir / "BEST_checkpoint.pth"]
# extra checkpoint before LR drop and every 100 epochs
for checkpoint_path in checkpoint_paths:
dist.save_on_master(
{
"model": model_without_ddp.state_dict(),
"model_ema": model_ema.state_dict() if args.ema else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"args": args,
},
checkpoint_path,
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
parser = argparse.ArgumentParser("UniTAB training and evaluation script", parents=[get_args_parser()])
args = parser.parse_args()
args.GT_type = '' ## updated from json in main()
args.refexp_dataset_name = '' ## updated from json in main()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)