-
Notifications
You must be signed in to change notification settings - Fork 8.2k
Closed
Labels
ragretrieve-augmented generative agentsretrieve-augmented generative agents
Description
@thinkall yes
its works but its always gives same output
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrive_lancedb import LancedbRetrieveUserProxyAgent
from autogen.agentchat.contrib.retrive_lancedb import create_lancedb
autogen.ChatCompletion.start_logging()
# 1. create an RetrieveAssistantAgent instance named "assistant"
assistant = RetrieveAssistantAgent(
name="assistant",
system_message="You are a helpful assistant.",
llm_config={
"request_timeout": 600,
"seed": 42,
"config_list": config_list,
},
)
ragproxyagent = LancedbRetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
retrieve_config={
"task": "qa",
"docs_path": "https://raw.githubusercontent.com/microsoft/autogen/main/README.md", # change this to your own path, such as https://raw.githubusercontent.com/microsoft/autogen/main/README.md
"chunk_token_size": 2000,
"client": "__",
"embedding_model": "all-mpnet-base-v2",
},
)
also im not user , adding 'client:'--' it is taking lancedb
? or should i need to define it again tere, also its not override any previous data thats reason i guess its always giving same output
i tried this way but working
table = db.open_table("my_table", mode="overwrite")
db = lancedb.connect('/tmp/lancedb')
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
Originally posted by @akashAD98 in #25 (comment)
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
ragretrieve-augmented generative agentsretrieve-augmented generative agents
