Skip to content

[Bug]: when i use qwen embedding model to index, i get a problem #2194

@zzzengzhe

Description

@zzzengzhe

Do you need to file an issue?

  • I have searched the existing issues and this bug is not already filed.
  • My model is hosted on OpenAI or Azure. If not, please look at the "model providers" issue and don't file a new one here.
  • I believe this is a legitimate bug, not just a question. If this is a question, please use the Discussions area.

Describe the bug

when i use the command "graphrag index --root ./graphrag",i got the wrong message as flow
Failed to validate embedding model (default_embedding_model) params litellm.BadRequestError: OpenAIException - Error code: 400 - {'error': {'message': "'encoding_format' only support with [float, base64]", 'type': 'invalid_request_error', 'param': None, 'code': None}, 'request_id': '42b44c10-cbe7-9a54-9f07-f831683a27fc'}

settings.yaml

This config file contains required core defaults that must be set, along with a handful of common optional settings.

For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/

LLM settings

There are a number of settings to tune the threading and token limits for LLM calls - check the docs.

models:
default_chat_model:
type: chat
model_provider: openai
auth_type: api_key # or azure_managed_identity
api_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file, or remove if managed identity
model: qwen-plus
api_base: https://dashscope.aliyuncs.com/compatible-mode/v1
# api_version: 2024-05-01-preview
model_supports_json: true # recommended if this is available for your model.
concurrent_requests: 25
async_mode: threaded # or asyncio
retry_strategy: exponential_backoff
max_retries: 2
tokens_per_minute: null
requests_per_minute: null
default_embedding_model:
type: embedding
model_provider: openai
auth_type: api_key
api_key: ${GRAPHRAG_API_KEY}
model: text-embedding-v4
api_base: https://dashscope.aliyuncs.com/compatible-mode/v1
# api_version: 2024-05-01-preview
concurrent_requests: 10
async_mode: threaded # or asyncio
retry_strategy: exponential_backoff
max_retries: 2
tokens_per_minute: null
requests_per_minute: null

Input settings

input:
storage:
type: file # or blob
base_dir: "input"
file_type: text # [csv, text, json]

chunks:
size: 1200
overlap: 100
group_by_columns: [id]

Output/storage settings

If blob storage is specified in the following four sections,

connection_string and container_name must be provided

output:
type: file # [file, blob, cosmosdb]
base_dir: "output"

cache:
type: file # [file, blob, cosmosdb]
base_dir: "cache"

reporting:
type: file # [file, blob]
base_dir: "logs"

vector_store:
default_vector_store:
type: lancedb
db_uri: output/lancedb
container_name: default

Workflow settings

embed_text:
model_id: default_embedding_model
vector_store_id: default_vector_store

extract_graph:
model_id: default_chat_model
prompt: "prompts/extract_graph.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 1

summarize_descriptions:
model_id: default_chat_model
prompt: "prompts/summarize_descriptions.txt"
max_length: 500

extract_graph_nlp:
text_analyzer:
extractor_type: regex_english # [regex_english, syntactic_parser, cfg]
async_mode: threaded # or asyncio

cluster_graph:
max_cluster_size: 10

extract_claims:
enabled: false
model_id: default_chat_model
prompt: "prompts/extract_claims.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 1

community_reports:
model_id: default_chat_model
graph_prompt: "prompts/community_report_graph.txt"
text_prompt: "prompts/community_report_text.txt"
max_length: 2000
max_input_length: 8000

embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes

umap:
enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)

snapshots:
graphml: false
embeddings: false

Query settings

The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.

See the config docs: https://microsoft.github.io/graphrag/config/yaml/#query

local_search:
chat_model_id: default_chat_model
embedding_model_id: default_embedding_model
prompt: "prompts/local_search_system_prompt.txt"

global_search:
chat_model_id: default_chat_model
map_prompt: "prompts/global_search_map_system_prompt.txt"
reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"
knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"

drift_search:
chat_model_id: default_chat_model
embedding_model_id: default_embedding_model
prompt: "prompts/drift_search_system_prompt.txt"
reduce_prompt: "prompts/drift_search_reduce_prompt.txt"

basic_search:
chat_model_id: default_chat_model
embedding_model_id: default_embedding_model
prompt: "prompts/basic_search_system_prompt.txt"

Steps to reproduce

No response

Expected Behavior

No response

GraphRAG Config Used

# Paste your config here

Logs and screenshots

No response

Additional Information

  • GraphRAG Version:
  • Operating System:
  • Python Version:
  • Related Issues:

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingtriageDefault label assignment, indicates new issue needs reviewed by a maintainer

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions