Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

sklearn examples #169

Merged
merged 22 commits into from
Oct 8, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions examples/trials/sklearn/classification/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
authorName: default
experimentName: example_sklearn-classification
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 100
#choice: local, remote
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 main.py
codeDir: .
gpuNum: 0
83 changes: 83 additions & 0 deletions examples/trials/sklearn/classification/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import nni
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
import logging
import numpy as np


LOG = logging.getLogger('sklearn_classification')

def load_data():
'''Load dataset, use 20newsgroups dataset'''
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=99, test_size=0.25)

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

return X_train, X_test, y_train, y_test

def get_default_parameters():
'''get default parameters'''
params = {
'C': 1.0,
'keral': 'linear',
'degree': 3,
'gamma': 0.01,
'coef0': 0.01
}
return params

def get_model(PARAMS):
'''Get model according to parameters'''
model = SVC()
model.C = PARAMS.get('C')
model.keral = PARAMS.get('keral')
model.degree = PARAMS.get('degree')
model.gamma = PARAMS.get('gamma')
model.coef0 = PARAMS.get('coef0')

return model

def run(X_train, X_test, y_train, y_test, PARAMS):
'''Train model and predict result'''
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
LOG.debug('score: %s' % score)
nni.report_final_result(score)

if __name__ == '__main__':
X_train, X_test, y_train, y_test = load_data()

try:
# get parameters from tuner
RECEIVED_PARAMS = nni.get_parameters()
LOG.debug(RECEIVED_PARAMS)
PARAMS = get_default_parameters()
PARAMS.update(RECEIVED_PARAMS)
LOG.debug(PARAMS)
model = get_model(PARAMS)
run(X_train, X_test, y_train, y_test, model)
except Exception as exception:
LOG.exception(exception)
raise
7 changes: 7 additions & 0 deletions examples/trials/sklearn/classification/search_space.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"C": {"_type":"uniform","_value":[0.1, 1]},
"keral": {"_type":"choice","_value":["linear", "rbf", "poly", "sigmoid"]},
"degree": {"_type":"choice","_value":[1, 2, 3, 4]},
"gamma": {"_type":"uniform","_value":[0.01, 0.1]},
"coef0 ": {"_type":"uniform","_value":[0.01, 0.1]}
}
20 changes: 20 additions & 0 deletions examples/trials/sklearn/regression/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
authorName: default
experimentName: example_sklearn-regression
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 30
#choice: local, remote
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 main.py
codeDir: .
gpuNum: 0
102 changes: 102 additions & 0 deletions examples/trials/sklearn/regression/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import nni
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn import linear_model
import logging
import numpy as np
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor

LOG = logging.getLogger('sklearn_regression')

def load_data():
'''Load dataset, use boston dataset'''
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=99, test_size=0.25)
#normalize data
ss_X = StandardScaler()
ss_y = StandardScaler()

X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train[:, None])[:,0]
y_test = ss_y.transform(y_test[:, None])[:,0]

return X_train, X_test, y_train, y_test

def get_default_parameters():
'''get default parameters'''
params = {
'model_name': 'LinearRegression'
}
return params

def get_model(PARAMS):
'''Get model according to parameters'''
model_dict = {
'LinearRegression': LinearRegression(),
'SVR': SVR(),
'KNeighborsRegressor': KNeighborsRegressor(),
'DecisionTreeRegressor': DecisionTreeRegressor()
}
if not model_dict.get(PARAMS['model_name']):
LOG.exception('Not supported model!')
exit(1)

model = model_dict[PARAMS['model_name']]

try:
if PARAMS['model_name'] == 'SVR':
model.kernel = PARAMS['svr_kernel']
elif PARAMS['model_name'] == 'KNeighborsRegressor':
model.weights = PARAMS['knr_weights']
except Exception as exception:
LOG.exception(exception)
raise
return model


def run(X_train, X_test, y_train, y_test, PARAMS):
'''Train model and predict result'''
model.fit(X_train, y_train)
predict_y = model.predict(X_test)
score = r2_score(y_test, predict_y)
LOG.debug('r2 score: %s' % score)
nni.report_final_result(score)

if __name__ == '__main__':
X_train, X_test, y_train, y_test = load_data()

try:
# get parameters from tuner
RECEIVED_PARAMS = nni.get_parameters()
LOG.debug(RECEIVED_PARAMS)
PARAMS = get_default_parameters()
PARAMS.update(RECEIVED_PARAMS)
LOG.debug(PARAMS)
model = get_model(PARAMS)
run(X_train, X_test, y_train, y_test, model)
except Exception as exception:
LOG.exception(exception)
raise
5 changes: 5 additions & 0 deletions examples/trials/sklearn/regression/search_space.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"model_name":{"_type":"choice","_value":["LinearRegression", "SVR", "KNeighborsRegressor", "DecisionTreeRegressor"]},
"svr_kernel": {"_type":"choice","_value":["linear", "poly", "rbf"]},
"knr_weights": {"_type":"choice","_value":["uniform", "distance"]}
}