Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix index_put with boolean index #2018

Merged
merged 22 commits into from
Jan 24, 2025
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 2 additions & 30 deletions onnxscript/function_libs/torch_lib/ops/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -4297,36 +4297,8 @@
"""index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor"""

index = op.SequenceAt(indices, 0) # assume indices only have 1 element
# FIXME: ORT ArgMax fails on INT64 input even though ONNX allows it
index_int = op.Cast(index, to=INT32.dtype)
# if all False, return op.Identity(self)
if op.ReduceSum(index_int) == 0:
result = self
else:
# change array([F,F,T,F,F]) to array([2])
index = op.ArgMax(index_int) # assume index only have 1 True
# change array([2]) to array([2,2,2,2,2])
self_dim_1 = op.Shape(self, start=1, end=2)
index_dim_0 = op.Shape(index, start=0, end=1)
shape = op.Concat(self_dim_1, index_dim_0, axis=0)
new_ind = op.Expand(index, shape)
new_ind_t = op.Transpose(new_ind)

# values must have same rank with input(self)
if op.Size(op.Shape(values)) < op.Size(op.Shape(self)): # type: ignore[operator]
values = op.Unsqueeze(values, op.Constant(value_ints=[0]))

if op.Cast(accumulate, to=BOOL.dtype):
zeros = op.Expand(op.Constant(value_float=0.0), op.Shape(self))
zeros = op.CastLike(zeros, values)
result = op.ScatterElements(zeros, new_ind_t, values)
# FIXME: type promotion
result = op.CastLike(result, self)
result = op.Add(result, self)
else:
result = op.ScatterElements(self, new_ind_t, values)

return result
# accumulate should be always False, True does not make sense but an assert would be great
xadupre marked this conversation as resolved.
Show resolved Hide resolved
return op.Where(index, values, self)

Check warning on line 4301 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L4301

Added line #L4301 was not covered by tests
justinchuby marked this conversation as resolved.
Show resolved Hide resolved
justinchuby marked this conversation as resolved.
Show resolved Hide resolved


def aten_index_reduce(
Expand Down
60 changes: 60 additions & 0 deletions tests/function_libs/torch_lib/e2e_test.py
justinchuby marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import unittest
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed

import onnx
import torch

from onnxscript._internal.version_utils import torch_older_than


class TestEnd2End(unittest.TestCase):
@unittest.skipIf(torch_older_than("2.6"), reason="fails to export")
def test_adaptive_enc_mask(self):
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
# first idx of each chunk, such as [0,18,36,48].
chunk_start_idx = torch.Tensor(chunk_start_idx).long()
# append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
start_pad = torch.nn.functional.pad(chunk_start_idx, (1, 0))
# append x_len to the end, so it becomes [0,18,36,48, x_len]
end_pad = torch.nn.functional.pad(chunk_start_idx, (0, 1), value=x_len)
# seq_range size: [x_len, 1]
seq_range = torch.arange(0, x_len).unsqueeze(-1)
# idx size: [x_len]
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1]
# boundary size: [x_len]
# boundary = end_pad[idx]
# seq_range_expand size [x_len, x_len]
seq_range_expand = torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right

class MyModule(torch.nn.Module):
def forward(self, X):
x_len = 10 # 368
chunk_start_idx = [4]
left_window = 18
result = adaptive_enc_mask(x_len, chunk_start_idx, left_window, right_window=0)
return X + torch.unsqueeze(result, -1)

torch_model = MyModule()
torch_model.eval()
inputs = (torch.randn(1, 1, 368),)
expected = torch_model(*inputs)

program = torch.onnx.export(torch_model, inputs, dynamo=True)
# program.save(r"test_adaptive_enc_mask_not_optimized.onnx")
program.optimize()
program.save(r"test_adaptive_enc_mask.onnx")
ref = onnx.reference.ReferenceEvaluator(program.model_proto)
got = ref.run(None, {"x": inputs[0].numpy()})
torch.testing.assert_close(expected, torch.tensor(got[0]))


if __name__ == "__main__":
unittest.main(verbosity=2)
Loading