Skip to content

Commit

Permalink
Merge nested main (#597)
Browse files Browse the repository at this point in the history
* MVP for Indian Stocks in qlib using yahooquery

* cleaned with black

* cleaned with black

* add YahooNormalizeIN and YahooNormalizeIN1d

* cleaned the code

* added 1min for IN and also updated readme

* update comments

* fix comments

* recorder support upload both raw file and directory

* fix comments

* Update README.md

* Fix docs of QlibRecorder

* sort index after loader (#538)

make sure the fetch method is based on a index-sorted pd.DataFrame

* refactor online serving rolling api

* refactor TRA

* format by black

* fix horizon

* fix TRA when use single head

* clean up

* improve pretrain

* update README

* fix tra when logdir is None

* fix tra when logdir is None

* Update strategy.py

* Update README.md

* Update README.md

* Conda Suggestion

* code standard docs

* Update ensemble.py (#560)

* Fix CI  Bug (#575)


Co-authored-by: yuxwang <anduinnn@foxmail.com>

* Update gen.py (#576)

* Fix multi-process loop calls (#574)

* check lexsort in the 'lazy_sort_index' function (#566)

* check lexsort

* check lexsort

* lexsort comment

* lexsort comment

* Delete .DS_Store

* Update README.md

* bug fix & use oracle transport pretrain

* mend

* Add `backend_freq_config` parameter, support multi-freq uri

* Add sample_config to QlibDataLoader, support multi-freq

* add multi-freq example

* get_cls_kwargs renamed get_callable_kwargs

* support multi-freq uri

* Add inst_processors to D.features

* Fix typo

* Fix the index type of the multi-freq example

* Fix duplicate mlflow directories in tests

* Add DataPathManager to QlibConfig && modify inst_processors to supports list only

* Modify the default value in the multi_freq example

* Modify client-server mode and dataset-cache to disable inst_processor

* Add wheel package to github CI

* fix comment

* Update FAQ.rst

* Update README.md

Fix wrong link

* Update the docs of TaskManager (#586)

* Update manage.py

* update yaml

* update run_all_model

* Modify the Feature to be case sensitive (#589)

* update README

* remove verbose

* fix spell bug

* fix typos (#592)

* Update Release Note

* fix portfolio bug

* Add calendar support for resample

* add freq kwargs

* test.yml: Remove redundant code (#595)

* Supporting shared processor (#596)

* Supporting shared processor

* fix readonly reverse bug

* remove pytests dependency

* with fit bug

* fix parameter error

* fix comments

* Fix undefined names in Python code (#599)

* Update pytorch_tabnet.py

$ `flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics`
```
./qlib/qlib/contrib/model/pytorch_tabnet.py:567:38: F821 undefined name 'inp'
            self.independ.append(GLU(inp, out_dim, vbs=vbs))
                                     ^
./qlib/examples/model_rolling/task_manager_rolling.py:75:18: F821 undefined name 'task_train'
        run_task(task_train, self.task_pool, experiment_name=self.experiment_name)
                 ^
2     F821 undefined name 'task_train'
2
```

* Fix undefined names in Python code

* from qlib.model.trainer import task_train

* update seed

* fix some docstring

* add comments

* Fix SimpleDatasetCache

* Update setup.py

updated classifiers

* Update setup.py

change to matplotlib==3.3

* Update python-publish.yml

added python 3.9

* updategrade version number

* Update model list

* fix the type of filter_pipe

* fix comment

* fix record_temp

* update cvxpy version

* Update code_standard.rst (#587)

* Update code_standard.rst

* Update docs/developer/code_standard.rst

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

* Add file lock for MLflowExpManager (#619)

* fix torch version

* Share version number (#620)

* Update initialization.rst (#622)

* Update initialization.rst

* Update docs/start/initialization.rst

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

* Update docs/start/initialization.rst

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

* fix bugs for running previous exmaple

* fix deal amount bug

* update change doc (#623)

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* Delete change doc.gif

* Add files via upload

* Update README.md

* Delete change doc.gif

* Add files via upload

* Delete change doc.gif

* Add files via upload

* Update README.md

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>

* update doc

* simplify run all model

* fix run all model bug

* Fix Models (#483)

* fix gat dataset

* fix tft model

* Update tft.py

* Fix tft.py

Co-authored-by: Pengrong Zhu <zhu.pengrong@foxmail.com>

* type and skip empty exp

* fix model yaml config

* fix tft import bug

* skip empty result

* fix model and yaml bug

* fix wrong generate parameter

* Modify multi-freq example (#626)

* modify the example of multi-freq

* add Copyright

* add a comment to average_ops.py

* modify the example of multi-freq

* add comment to multi_freq_handler.py

* add the Ref expression description to multi_freq_handler.py

* add expression description to multi_freq_handler.py

* update images

* fix workflow and update framework

Co-authored-by: Gaurav <2796gaurav@gmail.com>
Co-authored-by: 2796gaurav <17353992+2796gaurav@users.noreply.github.com>
Co-authored-by: bxdd <bxd98@126.com>
Co-authored-by: Young <afe.young@gmail.com>
Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>
Co-authored-by: Dong Zhou <Zhou.Dong@microsoft.com>
Co-authored-by: ZhangTP1996 <ztp18@mails.tsinghua.edu.cn>
Co-authored-by: demon143 <59681577+demon143@users.noreply.github.com>
Co-authored-by: Wangwuyi123 <51237097+Wangwuyi123@users.noreply.github.com>
Co-authored-by: yuxwang <anduinnn@foxmail.com>
Co-authored-by: Pengrong Zhu <zhu.pengrong@foxmail.com>
Co-authored-by: Mark Zhao <50850474+markzhao98@users.noreply.github.com>
Co-authored-by: cslwqxx <cslwqxx@users.noreply.github.com>
Co-authored-by: Dong Zhou <evanzd@users.noreply.github.com>
Co-authored-by: SaintMalik <37118134+saintmalik@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: Anurag Kumar <mailanu98@gmail.com>
Co-authored-by: demon143 <785696300@qq.com>
  • Loading branch information
19 people authored Sep 30, 2021
1 parent 163e3c6 commit 3760a18
Show file tree
Hide file tree
Showing 145 changed files with 3,984 additions and 1,223 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/python-publish.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ jobs:
strategy:
matrix:
os: [windows-latest, macos-latest]
python-version: [3.6, 3.7, 3.8]
python-version: [3.6, 3.7, 3.8, 3.9]

steps:
- uses: actions/checkout@v2
Expand Down
99 changes: 25 additions & 74 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
name: Test
name: Test

on:
push:
Expand All @@ -13,7 +13,7 @@ jobs:
strategy:
matrix:
os: [windows-latest, ubuntu-16.04, ubuntu-18.04, ubuntu-20.04]
python-version: [3.6, 3.7, 3.8, 3.9]
python-version: [3.6, 3.7, 3.8]

steps:
- uses: actions/checkout@v2
Expand All @@ -25,63 +25,29 @@ jobs:

- name: Lint with Black
run: |
cd ..
if [ "$RUNNER_OS" == "Windows" ]; then
$CONDA\\python.exe -m pip install black
$CONDA\\python.exe -m black qlib -l 120 --check --diff
else
sudo $CONDA/bin/python -m pip install black
$CONDA/bin/python -m black qlib -l 120 --check --diff
fi
shell: bash
pip install --upgrade pip
pip install black wheel
black qlib -l 120 --check --diff
# Test Qlib installed with pip
# - name: Install Qlib with pip
# run: |
# if [ "$RUNNER_OS" == "Windows" ]; then
# $CONDA\\python.exe -m pip install numpy==1.19.5
# $CONDA\\python.exe -m pip install pyqlib --ignore-installed ruamel.yaml numpy --user
# else
# sudo $CONDA/bin/python -m pip install numpy==1.19.5
# sudo $CONDA/bin/python -m pip install pyqlib --ignore-installed ruamel.yaml numpy
# fi
# shell: bash
- name: Install Qlib with pip
run: |
pip install numpy==1.19.5 ruamel.yaml
pip install pyqlib --ignore-installed
# - name: Test data downloads
# run: |
# if [ "$RUNNER_OS" == "Windows" ]; then
# $CONDA\\python.exe scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn
# else
# $CONDA/bin/python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn
# fi
# shell: bash
- name: Test data downloads
run: |
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn
# - name: Test workflow by config (install from pip)
# run: |
# if [ "$RUNNER_OS" == "Windows" ]; then
# $CONDA\\python.exe qlib\\workflow\\cli.py examples\\benchmarks\\LightGBM\\workflow_config_lightgbm_Alpha158.yaml
# $CONDA\\python.exe -m pip uninstall -y pyqlib
# else
# $CONDA/bin/python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
# sudo $CONDA/bin/python -m pip uninstall -y pyqlib
# fi
# shell: bash

# Test Qlib installed from source
- name: Test workflow by config (install from pip)
run: |
python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
python -m pip uninstall -y pyqlib
# Test Qlib installed from source
- name: Install Qlib from source
run: |
if [ "$RUNNER_OS" == "Windows" ]; then
$CONDA\\python.exe -m pip install --upgrade cython
$CONDA\\python.exe -m pip install numpy jupyter jupyter_contrib_nbextensions
$CONDA\\python.exe -m pip install -U scipy scikit-learn # installing without this line will cause errors on GitHub Actions, while instsalling locally won't
$CONDA\\python.exe setup.py install
else
sudo $CONDA/bin/python -m pip install --upgrade cython
sudo $CONDA/bin/python -m pip install numpy jupyter jupyter_contrib_nbextensions
sudo $CONDA/bin/python -m pip install -U scipy scikit-learn # installing without this line will cause errors on GitHub Actions, while instsalling locally won't
sudo $CONDA/bin/python setup.py install
fi
shell: bash
pip install --upgrade cython jupyter jupyter_contrib_nbextensions numpy scipy scikit-learn # installing without this line will cause errors on GitHub Actions, while instsalling locally won't
pip install -e .
- name: Test data downloads
run: |
Expand All @@ -94,30 +60,15 @@ jobs:

- name: Install test dependencies
run: |
if [ "$RUNNER_OS" == "Windows" ]; then
$CONDA\\python.exe -m pip install --upgrade pip
$CONDA\\python.exe -m pip install black pytest
else
sudo $CONDA/bin/python -m pip install --upgrade pip
sudo $CONDA/bin/python -m pip install black pytest
fi
shell: bash
pip install --upgrade pip
pip install black pytest
- name: Unit tests with Pytest
run: |
cd tests
if [ "$RUNNER_OS" == "Windows" ]; then
$CONDA\\python.exe -m pytest . --durations=0
else
$CONDA/bin/python -m pytest . --durations=0
fi
shell: bash
python -m pytest . --durations=10
- name: Test workflow by config (install from source)
run: |
if [ "$RUNNER_OS" == "Windows" ]; then
$CONDA\\python.exe qlib\\workflow\\cli.py examples\\benchmarks\\LightGBM\\workflow_config_lightgbm_Alpha158.yaml
else
$CONDA/bin/python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
fi
shell: bash
python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
58 changes: 26 additions & 32 deletions .github/workflows/test_macos.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ jobs:
runs-on: macos-latest
strategy:
matrix:
python-version: [3.6, 3.7, 3.8, 3.9]
python-version: [3.6, 3.7, 3.8]

steps:
- uses: actions/checkout@v2
Expand All @@ -26,52 +26,46 @@ jobs:
- name: Lint with Black
run: |
cd ..
sudo $CONDA/bin/python -m pip install black
$CONDA/bin/python -m black qlib -l 120 --check --diff
python -m pip install pip --upgrade
python -m pip install wheel --upgrade
python -m pip install black
python -m black qlib -l 120 --check --diff
# Test Qlib installed with pip
# - name: Install Qlib with pip
# run: |
# sudo $CONDA/bin/python -m pip install numpy==1.19.5
# sudo $CONDA/bin/python -m pip install pyqlib --ignore-installed ruamel.yaml numpy

- name: Install Qlib with pip
run: |
python -m pip install numpy==1.19.5
python -m pip install pyqlib --ignore-installed ruamel.yaml numpy
- name: Install Lightgbm for MacOS
run: |
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Microsoft/qlib/main/.github/brew_install.sh)"
HOMEBREW_NO_AUTO_UPDATE=1 brew install lightgbm
# - name: Test data downloads
# run: |
# $CONDA/bin/python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn

# - name: Test workflow by config (install from pip)
# run: |
# $CONDA/bin/python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
# sudo $CONDA/bin/python -m pip uninstall -y pyqlib

- name: Test data downloads
run: |
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn
- name: Test workflow by config (install from pip)
run: |
python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
python -m pip uninstall -y pyqlib
# Test Qlib installed from source
- name: Install Qlib from source
run: |
sudo $CONDA/bin/python -m pip install --upgrade cython
sudo $CONDA/bin/python -m pip install numpy jupyter jupyter_contrib_nbextensions
sudo $CONDA/bin/python -m pip install -U scipy scikit-learn # installing without this line will cause errors on GitHub Actions, while instsalling locally won't
sudo $CONDA/bin/python setup.py install
- name: Test data downloads
run: |
$CONDA/bin/python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn
python -m pip install --upgrade cython
python -m pip install numpy jupyter jupyter_contrib_nbextensions
python -m pip install -U scipy scikit-learn # installing without this line will cause errors on GitHub Actions, while instsalling locally won't
python setup.py install
- name: Install test dependencies
run: |
sudo $CONDA/bin/python -m pip install --upgrade pip
sudo $CONDA/bin/python -m pip install -U pyopenssl idna
sudo $CONDA/bin/python -m pip install black pytest
python -m pip install --upgrade pip
python -m pip install -U pyopenssl idna
python -m pip install black pytest
- name: Unit tests with Pytest
run: |
cd tests
$CONDA/bin/python -m pytest . --durations=0
python -m pytest . --durations=0
- name: Test workflow by config (install from source)
run: |
$CONDA/bin/python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
python qlib/workflow/cli.py examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ dist/
.nvimrc
.vscode

qlib/VERSION.txt
qlib/data/_libs/expanding.cpp
qlib/data/_libs/rolling.cpp
examples/estimator/estimator_example/
Expand Down
1 change: 1 addition & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
include qlib/VERSION.txt
43 changes: 24 additions & 19 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
Recent released features
| Feature | Status |
| -- | ------ |
|Temporal Routing Adaptor (TRA) | [Released](https://github.com/microsoft/qlib/pull/531) on July 30, 2021 |
| Transformer & Localformer | [Released](https://github.com/microsoft/qlib/pull/508) on July 22, 2021 |
| Release Qlib v0.7.0 | [Released](https://github.com/microsoft/qlib/releases/tag/v0.7.0) on July 12, 2021 |
| TCTS Model | [Released](https://github.com/microsoft/qlib/pull/491) on July 1, 2021 |
Expand All @@ -23,10 +24,8 @@ Recent released features

Features released before 2021 are not listed here.



<p align="center">
<img src="http://fintech.msra.cn/images_v060/logo/1.png" />
<img src="http://fintech.msra.cn/images_v070/logo/1.png" />
</p>


Expand All @@ -45,7 +44,7 @@ For more details, please refer to our paper ["Qlib: An AI-oriented Quantitative
- [Data Preparation](#data-preparation)
- [Auto Quant Research Workflow](#auto-quant-research-workflow)
- [Building Customized Quant Research Workflow by Code](#building-customized-quant-research-workflow-by-code)
- [**Quant Model Zoo**](#quant-model-zoo)
- [**Quant Model(Paper) Zoo**](#quant-model-paper-zoo)
- [Run a single model](#run-a-single-model)
- [Run multiple models](#run-multiple-models)
- [**Quant Dataset Zoo**](#quant-dataset-zoo)
Expand All @@ -71,7 +70,7 @@ Your feedbacks about the features are very important.
# Framework of Qlib

<div style="align: center">
<img src="http://fintech.msra.cn/images_v060/framework.png?v=0.2" />
<img src="docs/_static/img/framework.svg" />
</div>


Expand Down Expand Up @@ -107,8 +106,9 @@ This table demonstrates the supported Python version of `Qlib`:
| Python 3.9 | :x: | :heavy_check_mark: | :x: |

**Note**:
1. **Conda** is suggested for managing your Python environment.
1. Please pay attention that installing cython in Python 3.6 will raise some error when installing ``Qlib`` from source. If users use Python 3.6 on their machines, it is recommended to *upgrade* Python to version 3.7 or use `conda`'s Python to install ``Qlib`` from source.
2. For Python 3.9, `Qlib` supports running workflows such as training models, doing backtest and plot most of the related figures (those included in [notebook](examples/workflow_by_code.ipynb)). However, plotting for the *model performance* is not supported for now and we will fix this when the dependent packages are upgraded in the future.
1. For Python 3.9, `Qlib` supports running workflows such as training models, doing backtest and plot most of the related figures (those included in [notebook](examples/workflow_by_code.ipynb)). However, plotting for the *model performance* is not supported for now and we will fix this when the dependent packages are upgraded in the future.

### Install with pip
Users can easily install ``Qlib`` by pip according to the following command.
Expand Down Expand Up @@ -162,7 +162,7 @@ Users could create the same dataset with it.
*Please pay **ATTENTION** that the data is collected from [Yahoo Finance](https://finance.yahoo.com/lookup), and the data might not be perfect.
We recommend users to prepare their own data if they have a high-quality dataset. For more information, users can refer to the [related document](https://qlib.readthedocs.io/en/latest/component/data.html#converting-csv-format-into-qlib-format)*.

### Automatic update of daily frequency data(from yahoo finance)
### Automatic update of daily frequency data (from yahoo finance)
> It is recommended that users update the data manually once (--trading_date 2021-05-25) and then set it to update automatically.

> For more information refer to: [yahoo collector](https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#automatic-update-of-daily-frequency-datafrom-yahoo-finance)
Expand Down Expand Up @@ -247,19 +247,19 @@ Qlib provides a tool named `qrun` to run the whole workflow automatically (inclu
2. Graphical Reports Analysis: Run `examples/workflow_by_code.ipynb` with `jupyter notebook` to get graphical reports
- Forecasting signal (model prediction) analysis
- Cumulative Return of groups
![Cumulative Return](http://fintech.msra.cn/images_v060/analysis/analysis_model_cumulative_return.png?v=0.1)
![Cumulative Return](http://fintech.msra.cn/images_v070/analysis/analysis_model_cumulative_return.png?v=0.1)
- Return distribution
![long_short](http://fintech.msra.cn/images_v060/analysis/analysis_model_long_short.png?v=0.1)
![long_short](http://fintech.msra.cn/images_v070/analysis/analysis_model_long_short.png?v=0.1)
- Information Coefficient (IC)
![Information Coefficient](http://fintech.msra.cn/images_v060/analysis/analysis_model_IC.png?v=0.1)
![Monthly IC](http://fintech.msra.cn/images_v060/analysis/analysis_model_monthly_IC.png?v=0.1)
![IC](http://fintech.msra.cn/images_v060/analysis/analysis_model_NDQ.png?v=0.1)
![Information Coefficient](http://fintech.msra.cn/images_v070/analysis/analysis_model_IC.png?v=0.1)
![Monthly IC](http://fintech.msra.cn/images_v070/analysis/analysis_model_monthly_IC.png?v=0.1)
![IC](http://fintech.msra.cn/images_v070/analysis/analysis_model_NDQ.png?v=0.1)
- Auto Correlation of forecasting signal (model prediction)
![Auto Correlation](http://fintech.msra.cn/images_v060/analysis/analysis_model_auto_correlation.png?v=0.1)
![Auto Correlation](http://fintech.msra.cn/images_v070/analysis/analysis_model_auto_correlation.png?v=0.1)

- Portfolio analysis
- Backtest return
![Report](http://fintech.msra.cn/images_v060/analysis/report.png?v=0.1)
![Report](http://fintech.msra.cn/images_v070/analysis/report.png?v=0.1)
<!--
- Score IC
![Score IC](docs/_static/img/score_ic.png)
Expand All @@ -276,7 +276,7 @@ Qlib provides a tool named `qrun` to run the whole workflow automatically (inclu
The automatic workflow may not suit the research workflow of all Quant researchers. To support a flexible Quant research workflow, Qlib also provides a modularized interface to allow researchers to build their own workflow by code. [Here](examples/workflow_by_code.ipynb) is a demo for customized Quant research workflow by code.


# [Quant Model Zoo](examples/benchmarks)
# [Quant Model (Paper) Zoo](examples/benchmarks)

Here is a list of models built on `Qlib`.
- [GBDT based on XGBoost (Tianqi Chen, et al. KDD 2016)](qlib/contrib/model/xgboost.py)
Expand All @@ -294,6 +294,7 @@ Here is a list of models built on `Qlib`.
- [TCTS based on pytorch (Xueqing Wu, et al. ICML 2021)](qlib/contrib/model/pytorch_tcts.py)
- [Transformer based on pytorch (Ashish Vaswani, et al. NeurIPS 2017)](qlib/contrib/model/pytorch_transformer.py)
- [Localformer based on pytorch (Juyong Jiang, et al.)](qlib/contrib/model/pytorch_localformer.py)
- [TRA based on pytorch (Hengxu, Dong, et al. KDD 2021)](qlib/contrib/model/pytorch_tra.py)

Your PR of new Quant models is highly welcomed.

Expand All @@ -307,9 +308,10 @@ All the models listed above are runnable with ``Qlib``. Users can find the confi
- Users can create a `workflow_by_code` python script based on the [one](examples/workflow_by_code.py) listed in the `examples` folder.
- Users can use the script [`run_all_model.py`](examples/run_all_model.py) listed in the `examples` folder to run a model. Here is an example of the specific shell command to be used: `python run_all_model.py --models=lightgbm`, where the `--models` arguments can take any number of models listed above(the available models can be found in [benchmarks](examples/benchmarks/)). For more use cases, please refer to the file's [docstrings](examples/run_all_model.py).
- **NOTE**: Each baseline has different environment dependencies, please make sure that your python version aligns with the requirements(e.g. TFT only supports Python 3.6~3.7 due to the limitation of `tensorflow==1.15.0`)

## Run multiple models
`Qlib` also provides a script [`run_all_model.py`](examples/run_all_model.py) which can run multiple models for several iterations. (**Note**: the script only support *Linux* for now. Other OS will be supported in the future. Besides, it doesn't support parrallel running the same model for multiple times as well, and this will be fixed in the future development too.)
`Qlib` also provides a script [`run_all_model.py`](examples/run_all_model.py) which can run multiple models for several iterations. (**Note**: the script only support *Linux* for now. Other OS will be supported in the future. Besides, it doesn't support parallel running the same model for multiple times as well, and this will be fixed in the future development too.)
The script will create a unique virtual environment for each model, and delete the environments after training. Thus, only experiment results such as `IC` and `backtest` results will be generated and stored.
Expand Down Expand Up @@ -374,9 +376,7 @@ Such overheads greatly slow down the data loading process.
Qlib data are stored in a compact format, which is efficient to be combined into arrays for scientific computation.

# Related Reports
- [【华泰金工林晓明团队】图神经网络选股与Qlib实践——华泰人工智能系列之四十二](https://mp.weixin.qq.com/s/w5fDB6oAv9dO6vlhf1kmhA)
- [Guide To Qlib: Microsoft’s AI Investment Platform](https://analyticsindiamag.com/qlib/)
- [【华泰金工林晓明团队】微软AI量化投资平台Qlib体验——华泰人工智能系列之四十](https://mp.weixin.qq.com/s/Brcd7im4NibJOJzZfMn6tQ)
- [微软也搞AI量化平台?还是开源的!](https://mp.weixin.qq.com/s/47bP5YwxfTp2uTHjUBzJQQ)
- [微矿Qlib:业内首个AI量化投资开源平台](https://mp.weixin.qq.com/s/vsJv7lsgjEi-ALYUz4CvtQ)

Expand All @@ -389,14 +389,19 @@ Qlib data are stored in a compact format, which is efficient to be combined into
Join IM discussion groups:
|[Gitter](https://gitter.im/Microsoft/qlib)|
|----|
|![image](http://fintech.msra.cn/images_v060/qrcode/gitter_qr.png)|
|![image](http://fintech.msra.cn/images_v070/qrcode/gitter_qr.png)|

# Contributing

This project welcomes contributions and suggestions.
**Here are some
[code standards](docs/developer/code_standard.rst) when you submit a pull request.**

If you want to contribute to Qlib's document, you can follow the steps in the figure below.
<p align="center">
<img src="https://github.com/demon143/qlib/blob/main/docs/_static/img/change%20doc.gif" />
</p>
Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
Expand Down
1 change: 1 addition & 0 deletions VERSION.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
0.7.1.99
Loading

0 comments on commit 3760a18

Please sign in to comment.