Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the EnviroAtlas dataset #364

Merged
merged 8 commits into from
Jan 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/api/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,11 @@ Cropland Data Layer (CDL)

.. autoclass:: CDL

EnviroAtlas
^^^^^^^^^^^

.. autoclass:: EnviroAtlas

Landsat
^^^^^^^

Expand Down
305 changes: 305 additions & 0 deletions tests/data/enviroatlas/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
#!/usr/bin/env python3

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import os
import shutil
from typing import Any, Dict

import fiona
import fiona.transform
import numpy as np
import rasterio
import shapely.geometry
from rasterio.crs import CRS
from rasterio.transform import Affine
from torchvision.datasets.utils import calculate_md5

suffix_to_key_map = {
"a_naip": "naip",
"b_nlcd": "nlcd",
"c_roads": "roads",
"d_water": "water",
"d1_waterways": "waterways",
"d2_waterbodies": "waterbodies",
"e_buildings": "buildings",
"h_highres_labels": "lc",
"prior_from_cooccurrences_101_31": "prior",
"prior_from_cooccurrences_101_31_no_osm_no_buildings": "prior_no_osm_no_buildings",
}

layer_data_profiles: Dict[str, Dict[Any, Any]] = {
"a_naip": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 4,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "pixel",
},
"data_type": "continuous",
"vals": (4, 255),
},
"b_nlcd": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15],
},
"c_roads": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [0, 1],
},
"d1_waterways": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [0, 1],
},
"d2_waterbodies": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [0, 1],
},
"d_water": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [0, 1],
},
"e_buildings": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [0, 1],
},
"h_highres_labels": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 1,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "categorical",
"vals": [10, 20, 30, 40, 70],
},
"prior_from_cooccurrences_101_31": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 5,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "continuous",
"vals": (0, 225),
},
"prior_from_cooccurrences_101_31_no_osm_no_buildings": {
"profile": {
"driver": "GTiff",
"dtype": "uint8",
"nodata": None,
"count": 5,
"crs": CRS.from_epsg(26914),
"blockxsize": 512,
"blockysize": 512,
"tiled": True,
"compress": "deflate",
"interleave": "band",
},
"data_type": "continuous",
"vals": (0, 220),
},
}

tile_list = [
"pittsburgh_pa-2010_1m-train_tiles-debuffered/4007925_se",
"austin_tx-2012_1m-test_tiles-debuffered/3009726_sw",
]


def write_data(path: str, profile: Dict[Any, Any], data_type: Any, vals: Any) -> None:
assert all(key in profile for key in ("count", "height", "width", "dtype"))
with rasterio.open(path, "w", **profile) as dst:
size = (profile["count"], profile["height"], profile["width"])
dtype = np.dtype(profile["dtype"])
if data_type == "continuous":
data = np.random.randint(vals[0], vals[1] + 1, size=size, dtype=dtype)
elif data_type == "categorical":
data = np.random.choice(vals, size=size).astype(dtype)
else:
raise ValueError(f"{data_type} is not recognized")
dst.write(data)


def generate_test_data(root: str) -> str:
"""Creates test data archive for the EnviroAtlas dataset and returns its md5 hash.

Args:
root (str): Path to store test data

Returns:
str: md5 hash of created archive
"""
size = (64, 64)
folder_path = os.path.join(root, "enviroatlas_lotp")

if not os.path.exists(folder_path):
os.makedirs(folder_path)

for prefix in tile_list:
for suffix, data_profile in layer_data_profiles.items():

img_path = os.path.join(folder_path, f"{prefix}_{suffix}.tif")
img_dir = os.path.dirname(img_path)
if not os.path.exists(img_dir):
os.makedirs(img_dir)

data_profile["profile"]["height"] = size[0]
data_profile["profile"]["width"] = size[1]
data_profile["profile"]["transform"] = Affine(
1.0, 0.0, 608170.0, 0.0, -1.0, 3381430.0
)

write_data(
img_path,
data_profile["profile"],
data_profile["data_type"],
data_profile["vals"],
)

# build the spatial index
schema = {
"geometry": "Polygon",
"properties": {
"split": "str",
"naip": "str",
"nlcd": "str",
"roads": "str",
"water": "str",
"waterways": "str",
"waterbodies": "str",
"buildings": "str",
"lc": "str",
"prior_no_osm_no_buildings": "str",
"prior": "str",
},
}
with fiona.open(
os.path.join(folder_path, "spatial_index.geojson"),
"w",
driver="GeoJSON",
crs="EPSG:3857",
schema=schema,
) as dst:
for prefix in tile_list:

img_path = os.path.join(folder_path, f"{prefix}_a_naip.tif")
with rasterio.open(img_path) as f:
geom = shapely.geometry.mapping(shapely.geometry.box(*f.bounds))
geom = fiona.transform.transform_geom(
f.crs.to_string(), "EPSG:3857", geom
)

row = {
"geometry": geom,
"properties": {
"split": prefix.split("/")[0].replace("_tiles-debuffered", "")
},
}
for suffix, data_profile in layer_data_profiles.items():
key = suffix_to_key_map[suffix]
row["properties"][key] = f"{prefix}_{suffix}.tif"
dst.write(row)

# Create archive
archive_path = os.path.join(root, "enviroatlas_lotp")
shutil.make_archive(archive_path, "zip", root_dir=root, base_dir="enviroatlas_lotp")
shutil.rmtree(folder_path)
md5: str = calculate_md5(archive_path + ".zip")
return md5


if __name__ == "__main__":
md5_hash = generate_test_data(os.getcwd())
print(md5_hash)
Binary file added tests/data/enviroatlas/enviroatlas_lotp.zip
Binary file not shown.
Loading