Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Spiral patch #105

Merged
merged 10 commits into from
May 28, 2024
6 changes: 3 additions & 3 deletions examples/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,11 @@

"""

from pathlib import Path
import runpy
import pytest
import matplotlib as mpl
from pathlib import Path

import matplotlib as mpl
import pytest

mpl.use("agg")

Expand Down
127 changes: 117 additions & 10 deletions examples/example_2D_trajectories.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@

# Internal
import mrinufft as mn

import mrinufft.trajectories.maths as mntm
from mrinufft import display_2D_trajectory


Expand Down Expand Up @@ -168,10 +168,10 @@ def show_trajectory(trajectory, one_shot, figure_size):
# Spiral
# ------
#
# A generalized function that generates spirals defined through the
# :math:`r = a \theta^{1/n}` equality, with :math:`r` the radius and
# :math:`\theta` the polar angle. Note that the most common spirals,
# Archimedes and Fermat, are subcases of this equation.
# A generalized function that generates algebraic spirals defined
# through the :math:`r = a \theta^n` equation, with :math:`r` the radius,
# :math:`\theta` the polar angle and :math:`n` the spiral power.
# Common algebraic spirals include Archimedes, Fermat and Galilean spirals.
#
# Arguments:
#
Expand Down Expand Up @@ -210,18 +210,125 @@ def show_trajectory(trajectory, one_shot, figure_size):
# ``spiral (str, float)``
# ~~~~~~~~~~~~~~~~~~~~~~~
#
# The algebraic spiral power defined through :math:`n` in the
# :math:`r = a \theta^n` equality, with :math:`r` the radius and
# :math:`\theta` the polar angle. It defines the gradient behavior,
# and therefore the distance between consecutive points and the shape
# of the spiral. It does not affect the number of revolutions, but
# rather the curve length and point distribution. Spirals with small
# :math:`n` (close to 0) tend to have radial behaviors
# around the center, and dedicate more points towards curved edges.
#
# The shape of the spiral defined through :math:`n` in the
# :math:`r = a \theta^{1/n}` equality, with :math:`r` the radius and
# :math:`\theta` the polar angle. Both ``"archimedes"`` and ``"fermat"``
# are available as string options for convenience.
# ``"archimedes"`` (1), ``"fermat"`` (0.5) and ``"galilean"`` (2) are available
# as string options for convenience. Algebraic spirals with negative powers,
# such as hyperbolic or lithuus spirals, are not considered relevant because
# of their asymptotic behavior around the center.
#

arguments = ["archimedes", "fermat", 0.5, 1.5]
arguments = ["galilean", "archimedes", "fermat", 1 / 4]
function = lambda x: mn.initialize_2D_spiral(Nc, Ns, tilt=tilt, spiral=x, in_out=in_out)
show_argument(function, arguments, one_shot=one_shot, subfigure_size=subfigure_size)


# %%
# ``patch_center (float)``
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# A slew rate anomaly is present at the center of algebraic spirals
# when their power is inferior to 1 (e.g. Fermat's) and parameterized
# through their angles in the above equation.
#
# To fix this problem, points at the center are re-arranged along
# the spiral until the gradients are monotically increasing from
# the center to the edges. This correction can be deactivated,
# but it is generally preferred to keep it.
#
# The spiral path is not changed, but the density can be altered
# over the first few samples. However the difference is extremely
# subtle, as shown below.
#

arguments = [False, True]
function = lambda x: mn.initialize_2D_spiral(
Nc,
Ns,
patch_center=x,
)
show_argument(function, arguments, one_shot=one_shot, subfigure_size=subfigure_size)


# %%
# Fibonacci spiral
# ----------------
#
# A non-algebraic spiral trajectory based on the Fibonacci sequence,
# reproducing the proposition from [CA99]_ in order to generate
# a uniform distribution with center-out shots.
#
# The number of shots is required to belong to the Fibonacci
# sequence for the trajectory definition to be relevant.
#
# Arguments:
#
# - ``Nc (int)``: number of individual shots. See radial
# - ``Ns (int)``: number of samples per shot. See radial
# - ``spiral_reduction (float)``: factor used to reduce the automatic spiral length. ``(default 1)``
# - ``patch_center (bool)``: whether the spiral anomaly at the center should be patched.
# ``(default True)``
#

Nc_fibonacci = mntm.get_closest_fibonacci_number(Nc)
trajectory = mn.initialize_2D_fibonacci_spiral(Nc_fibonacci, Ns)
show_trajectory(trajectory, figure_size=figure_size, one_shot=one_shot)


# %%
# ``spiral_reduction (float)``
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Factor used to reduce the automatic spiral length. In opposition to
# ``initialize_2D_spiral``, the number of spiral revolutions here
# is automatically determined from ``Ns`` and ``Nc`` to match a uniform
# density over the k-space sphere. It can lead to unrealistically
# strong gradients, and therefore we provide this factor to reduce the
# spiral length, which makes k-space denser along the shorter shots.
#

arguments = [0.5, 1, 2, 3]
function = lambda x: mn.initialize_2D_fibonacci_spiral(
Nc_fibonacci,
Ns,
spiral_reduction=x,
)
show_argument(function, arguments, one_shot=one_shot, subfigure_size=subfigure_size)


# %%
# ``patch_center (float)``
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# Similarly to algebraic spirals from ``initialize_2D_spiral``,
# the trajectory definition creates small anomalies at the center
# that makes slew rate requirements needlessly high.
#
# It is here related to the uniform density that requires central
# samples to be more strongly spaced than anywhere else because
# most shots start close to the center.
#
# The spiral path can be altered over the first few samples,
# but generally the difference is extremely subtle, as shown
# below.
#

arguments = [False, True]
function = lambda x: mn.initialize_2D_fibonacci_spiral(
Nc_fibonacci,
Ns,
patch_center=x,
)
show_argument(function, arguments, one_shot=one_shot, subfigure_size=subfigure_size)


# %%
# Cones
# -----
Expand Down
1 change: 0 additions & 1 deletion examples/example_3D_trajectories.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@

# Internal
import mrinufft as mn

from mrinufft import display_2D_trajectory, display_3D_trajectory


Expand Down
5 changes: 2 additions & 3 deletions examples/example_density.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,14 +12,13 @@

"""
import brainweb_dl as bwdl

import matplotlib.pyplot as plt
import numpy as np
from mrinufft import get_density, get_operator, check_backend

from mrinufft import check_backend, get_density, get_operator
from mrinufft.trajectories import initialize_2D_radial
from mrinufft.trajectories.display import display_2D_trajectory


# %%
# Create sample data
# ------------------
Expand Down
12 changes: 5 additions & 7 deletions examples/example_display_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,16 +8,14 @@
You can tune these parameters to your own taste and needs.
"""

import matplotlib as mpl
import matplotlib.pyplot as plt

# %%
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

from mrinufft import displayConfig, display_2D_trajectory, display_3D_trajectory
from mrinufft.trajectories import (
initialize_2D_spiral,
conify,
)
from mrinufft import display_2D_trajectory, display_3D_trajectory, displayConfig
from mrinufft.trajectories import conify, initialize_2D_spiral

# Trajectory parameters
Nc = 120 # Number of shots
Expand Down
97 changes: 43 additions & 54 deletions examples/example_gif_2D.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,39 +7,30 @@

"""

# %%
import joblib
import matplotlib.pyplot as plt
import mrinufft.trajectories.display as mtd
import mrinufft.trajectories.trajectory2D as mtt
import numpy as np

import joblib
from PIL import Image, ImageSequence


import mrinufft.trajectories.display as mtd
import mrinufft.trajectories.trajectory2D as mtt
from mrinufft.trajectories.display import displayConfig

# Options

# %% [markdown]
# # Options

# %%
Nc = 16
Ns = 200

nb_repetitions = 8

# %%
one_shot = 0
figsize = 4

nb_fps = 12
name_slow = 1
nb_frames = 3
duration = 150 # seconds

# %% [markdown]
# # Generation

# %%
# Generation

# Initialize trajectory function
functions = [
# Radial
Expand All @@ -52,11 +43,12 @@
("Radial", lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt=x)),
("Radial", lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt="uniform")),
# Spiral
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, spiral=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, spiral=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=0)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=1e-5)),
# Cones
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, nb_zigzags=x)),
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, width=x)),
Expand All @@ -77,63 +69,61 @@
("Rings", lambda x: mtt.initialize_2D_rings(x, Ns, nb_rings=nb_repetitions)[::-1]),
("Rings", lambda x: mtt.initialize_2D_rings(Nc, Ns, nb_rings=nb_repetitions)[::-1]),
# Rosette
("Rosette", lambda x: mtt.initialize_2D_rosette(Nc, Ns, coprime_index=0)),
("Rosette", lambda x: mtt.initialize_2D_rosette(Nc, Ns, coprime_index=x)),
("Rosette", lambda x: mtt.initialize_2D_rosette(Nc, Ns, coprime_index=30)),
# Waves
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6 * x, width=x)),
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6 * x, width=x)),
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6, width=1)),
# Lissajous
("Lissajous", lambda x: mtt.initialize_2D_lissajous(Nc, Ns, density=1)),
("Lissajous", lambda x: mtt.initialize_2D_lissajous(Nc, Ns, density=x)),
("Lissajous", lambda x: mtt.initialize_2D_lissajous(Nc, Ns, density=10)),
]

# %%
# Initialize trajectory arguments
arguments = [
# Radial
np.around(np.linspace(1, Nc, nb_fps)).astype(int), # Nc
np.linspace(2 * np.pi / Nc, np.pi / Nc, nb_fps // 2), # tilt
np.around(np.sin(np.linspace(0, 2 * np.pi, nb_fps // 2))).astype(bool), # in_out
np.linspace(np.pi / Nc, 2 * np.pi / Nc, nb_fps // 2), # tilt
[None] * (nb_fps // 4), # None
np.around(np.linspace(1, Nc, 4 * nb_frames)).astype(int), # Nc
np.linspace(2 * np.pi / Nc, np.pi / Nc, 2 * nb_frames), # tilt
np.around(np.sin(np.linspace(0, 2 * np.pi, 2 * nb_frames))).astype(bool), # in_out
np.linspace(np.pi / Nc, 2 * np.pi / Nc, 2 * nb_frames), # tilt
[None] * nb_frames, # None
# Spiral
np.linspace(0, np.sqrt(3), nb_fps // 2) ** 2, # spiral
np.linspace(3, 1, nb_fps // 3), # spiral
np.linspace(1, 2, nb_fps // 2), # nb_revolutions
np.linspace(2, 0, nb_fps), # nb_revolutions
[None] * (nb_fps // 4), # None
np.linspace(1e-5, 1, 2 * nb_frames), # nb_revolutions
np.linspace(1, np.sqrt(1 / 3), 2 * nb_frames) ** 2, # spiral
np.linspace(1 / 3, 1, 2 * nb_frames), # spiral
np.linspace(1, 3, 2 * nb_frames), # nb_revolutions
np.linspace(3, 1e-5, 4 * nb_frames), # nb_revolutions
[None] * nb_frames, # None
# Cones
np.linspace(0, 5, nb_fps // 2), # nb_zigzags
np.linspace(1, 2, nb_fps // 4), # width
np.linspace(2, 0, nb_fps // 2), # width
[None] * (nb_fps // 4), # None
np.linspace(0, 5, 2 * nb_frames), # nb_zigzags
np.linspace(1, 2, nb_frames), # width
np.linspace(2, 0, 2 * nb_frames), # width
[None] * nb_frames, # None
# Sinusoids
np.linspace(0, 1, nb_fps // 2), # width & nb_zigzags
np.linspace(1, 0, nb_fps // 2), # width & nb_zigzags
[None] * (nb_fps // 4), # None
np.linspace(0, 1, 2 * nb_frames), # width & nb_zigzags
np.linspace(1, 0, 2 * nb_frames), # width & nb_zigzags
[None] * nb_frames, # None
# Rings
np.around(np.linspace(1, nb_repetitions, nb_fps)).astype(int), # Nc & nb_rings
np.around(np.linspace(nb_repetitions, Nc, nb_fps // 2)).astype(int), # Nc
[None] * (nb_fps // 2), # None
np.around(np.linspace(1, nb_repetitions, 4 * nb_frames)).astype(
int
), # Nc & nb_rings
np.around(np.linspace(nb_repetitions, Nc, 2 * nb_frames)).astype(int), # Nc
[None] * nb_frames, # None
# Rosette
[None] * (nb_fps // 2), # None
np.around(np.linspace(0, 30, nb_fps)).astype(int), # coprime_index
[None] * (nb_fps // 2), # None
np.around(np.linspace(0, np.sqrt(30), 6 * nb_frames) ** 2).astype(
int
), # coprime_index
[None] * nb_frames, # None
# Waves
np.linspace(0, 2, nb_fps // 2), # width & nb_zigzags
np.linspace(2, 1, nb_fps // 2), # width & nb_zigzags
[None] * (nb_fps // 4), # None
np.linspace(0, 2, 4 * nb_frames), # width & nb_zigzags
np.linspace(2, 1, 2 * nb_frames), # width & nb_zigzags
[None] * nb_frames, # None
# Lissajous
[None] * (nb_fps // 2), # None
np.linspace(1, 10, 2 * nb_fps), # density
[None] * (nb_fps // 2), # None
np.linspace(1, 10, 6 * nb_frames), # density
[None] * nb_frames, # None
]

# %%


frame_setup = [
(f, i, name, arg)
Expand Down Expand Up @@ -180,15 +170,14 @@ def draw_frame(func, index, name, arg, save_dir="/tmp/"):
)


# %%
# Make a GIF of all images.
imgs = [Image.open(img) for img in image_files]
imgs[0].save(
"mrinufft_2D_traj.gif",
save_all=True,
append_images=imgs[1:],
optimize=False,
duration=200,
duration=duration,
loop=0,
)

Expand Down
Loading
Loading