Skip to content

Commit

Permalink
merge commits renewing forms from branch v0.4.0 to main (#800)
Browse files Browse the repository at this point in the history
* zht: renew README forms. (#792)

* chore: renew README forms (#791)

Co-authored-by: ChongWei905 <weichong4@huawei.com>

---------

Co-authored-by: JingRiGuMing <48117115+JingRiGuMing@users.noreply.github.com>
Co-authored-by: ChongWei905 <weichong4@huawei.com>
  • Loading branch information
3 people authored Jul 25, 2024
1 parent 90c7887 commit 6e2a4c7
Show file tree
Hide file tree
Showing 50 changed files with 1,261 additions and 498 deletions.
16 changes: 11 additions & 5 deletions configs/bit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,19 @@ too low. 5) With BiT fine-tuning, good performance can be achieved even if there

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

*coming soon*

performance tested on ascend 910(8p) with graph mode


<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params(M) | Recipe | Download |
|----------------| -------- |-----------|-----------|-----------|--------------------------------------------------------------------------------------------------| -------------------------------------------------------------------------- |
| bit_resnet50 | D910x8-G | 76.81 | 93.17 | 25.55 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet50_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet50-1e4795a4.ckpt) |
| bit_resnet50x3 | D910x8-G | 80.63 | 95.12 | 217.31 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet50x3_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet50x3-a960f91f.ckpt) |
| bit_resnet101 | D910x8-G | 77.93 | 93.75 | 44.54 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet101_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet101-2efa9106.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params(M) | Batch Size | Recipe | Download |
| ------------ | --------- | --------- | --------- | ---------- | ---------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- |
| bit_resnet50 | 76.81 | 93.17 | 25.55 | 32 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet50_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet50-1e4795a4.ckpt) |


</div>

Expand Down
12 changes: 9 additions & 3 deletions configs/cmt/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,17 @@ on ImageNet-1K dataset.

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

*coming soon*

performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params(M) | Recipe | Download |
|-----------| -------- |-----------|-----------|-----------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| cmt_small | D910x8-G | 83.24 | 96.41 | 26.09 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/cmt/cmt_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/cmt/cmt_small-6858ee22.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params(M) | Batch Size | Recipe | Download |
| --------- | --------- | --------- | --------- | ---------- | ------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| cmt_small | 83.24 | 96.41 | 26.09 | 128 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/cmt/cmt_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/cmt/cmt_small-6858ee22.ckpt) |


</div>
Expand Down
16 changes: 10 additions & 6 deletions configs/coat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,14 +10,18 @@ Co-Scale Conv-Attentional Image Transformer (CoaT) is a Transformer-based image

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

*coming soon*


performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Weight |
|-----------------|-----------|-------|------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| coat_lite_tiny | D910x8-G | 77.35 | 93.43 | 5.72 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_lite_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_lite_tiny-fa7bf894.ckpt) |
| coat_lite_mini | D910x8-G | 78.51 | 93.84 | 11.01 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_lite_mini_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_lite_mini-55a52f05.ckpt) |
| coat_tiny | D910x8-G | 79.67 | 94.88 | 5.50 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_tiny-071cb792.ckpt) |
| coat_mini | D910x8-G | 81.08 | 95.34 | 10.34 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_mini_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_mini-57c5bce7.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Weight |
| --------- | --------- | --------- | ---------- | ---------- | -------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
| coat_tiny | 79.67 | 94.88 | 5.50 | 32 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_tiny-071cb792.ckpt) |

</div>

Expand Down
24 changes: 16 additions & 8 deletions configs/convit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,16 +24,24 @@ while offering a much improved sample efficiency.[[1](#references)]

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode


<div align="center">

| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ----------- | --------- | --------- | ---------- | ---------- | ------------------------------------------------------------------------------------------------ |-------------|
| convit_tiny | 73.79 | 91.70 | 5.71 | 256 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/convit/convit_tiny-1961717e-910v2.ckpt) |

</div>

performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-------------------|----------|-----------|-----------|------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| convit_tiny | D910x8-G | 73.66 | 91.72 | 5.71 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_tiny-e31023f2.ckpt) |
| convit_tiny_plus | D910x8-G | 77.00 | 93.60 | 9.97 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_plus_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_tiny_plus-e9d7fb92.ckpt) |
| convit_small | D910x8-G | 81.63 | 95.59 | 27.78 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_small-ba858604.ckpt) |
| convit_small_plus | D910x8-G | 81.80 | 95.42 | 48.98 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_small_plus_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_small_plus-2352b9f7.ckpt) |
| convit_base | D910x8-G | 82.10 | 95.52 | 86.54 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_base_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_base-c61b808c.ckpt) |
| convit_base_plus | D910x8-G | 81.96 | 95.04 | 153.13 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_base_plus_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_base_plus-5c61c9ce.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ----------- | --------- | --------- | ---------- | ---------- | ------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| convit_tiny | 73.66 | 91.72 | 5.71 | 256 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_tiny-e31023f2.ckpt) |

</div>

Expand Down
22 changes: 17 additions & 5 deletions configs/convnext/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,25 @@ simplicity and efficiency of standard ConvNets.[[1](#references)]

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|----------------|-----------|-----------|-----------|------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| convnext_tiny | D910x64-G | 81.91 | 95.79 | 28.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_tiny-ae5ff8d7.ckpt) |
| convnext_small | D910x64-G | 83.40 | 96.36 | 50.22 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_small-e23008f3.ckpt) |
| convnext_base | D910x64-G | 83.32 | 96.24 | 88.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_base_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_base-ee3544b8.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ------------- | --------- | --------- | ---------- | ---------- | ---------------------------------------------------------------------------------------------------- |-------------|
| convnext_tiny | 81.28 | 95.61 | 28.59 | 16 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_tiny_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/convnext/convnext_tiny-db11dc82-910v2.ckpt) |


</div>

performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ------------- | --------- | --------- | ---------- | ---------- | ---------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------- |
| convnext_tiny | 81.91 | 95.79 | 28.59 | 16 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_tiny-ae5ff8d7.ckpt) |


</div>

Expand Down
18 changes: 15 additions & 3 deletions configs/convnextv2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,23 @@ benchmarks, including ImageNet classification, COCO detection, and ADE20K segmen

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

<div align="center">

| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| --------------- | --------- | --------- | ---------- | ---------- | -------------------------------------------------------------------------------------------------------- |-------------|
| convnextv2_tiny | 82.39 | 95.95 | 28.64 | 128 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnextv2/convnextv2_tiny_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/convnextv2/convnextv2_tiny-a35b79ce-910v2.ckpt) |

</div>

performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|------------------|----------|-----------|-----------|------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| convnextv2_tiny | D910x8-G | 82.43 | 95.98 | 28.64 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnextv2/convnextv2_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnextv2/convnextv2_tiny-d441ba2c.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| --------------- | --------- | --------- | ---------- | ---------- | -------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- |
| convnextv2_tiny | 82.43 | 95.98 | 28.64 | 128 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnextv2/convnextv2_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnextv2/convnextv2_tiny-d441ba2c.ckpt) |

</div>

Expand Down
19 changes: 14 additions & 5 deletions configs/crossvit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,14 +19,23 @@ Fusion is achieved by an efficient cross-attention module, in which each transfo

Our reproduced model performance on ImageNet-1K is reported as follows.

performance tested on ascend 910*(8p) with graph mode

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-------------|----------|-----------|-----------|------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| crossvit_9 | D910x8-G | 73.56 | 91.79 | 8.55 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/crossvit/crossvit_9_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/crossvit/crossvit_9-e74c8e18.ckpt) |
| crossvit_15 | D910x8-G | 81.08 | 95.33 | 27.27 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/crossvit/crossvit_15_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/crossvit/crossvit_15-eaa43c02.ckpt) |
| crossvit_18 | D910x8-G | 81.93 | 95.75 | 43.27 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/crossvit/crossvit_18_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/crossvit/crossvit_18-ca0a2e43.ckpt) |
| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ---------- | --------- | --------- | ---------- | ---------- | ------------------------------------------------------------------------------------------------- |-------------|
| crossvit_9 | 73.38 | 91.51 | 8.55 | 256 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/crossvit/crossvit_9_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/crossvit/crossvit_9-32c69c96-910v2.ckpt) |

</div>

performance tested on ascend 910(8p) with graph mode

<div align="center">

| Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
| ---------- | --------- | --------- | ---------- | ---------- | ------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| crossvit_9 | 73.56 | 91.79 | 8.55 | 256 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/crossvit/crossvit_9_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/crossvit/crossvit_9-e74c8e18.ckpt) |

</div>

Expand Down
Loading

0 comments on commit 6e2a4c7

Please sign in to comment.