Skip to content

Commit

Permalink
docs: add requirements and renew forms for readmes
Browse files Browse the repository at this point in the history
  • Loading branch information
ChongWei905 committed Nov 9, 2024
1 parent e2b34de commit bd1dbd5
Show file tree
Hide file tree
Showing 53 changed files with 779 additions and 527 deletions.
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,13 +29,13 @@ MindCV is an open-source toolbox for computer vision research and development ba

The following is the corresponding `mindcv` versions and supported `mindspore` versions.

| mindcv | mindspore |
|:------:|:----------:|
| main | master |
| v0.4.0 | 2.3.0 |
| 0.3.0 | 2.2.10 |
| 0.2 | 2.0 |
| 0.1 | 1.8 |
| mindcv | mindspore |
| :----: | :---------: |
| main | master |
| v0.4.0 | 2.3.0/2.3.1 |
| 0.3.0 | 2.2.10 |
| 0.2 | 2.0 |
| 0.1 | 1.8 |


### Major Features
Expand Down
199 changes: 100 additions & 99 deletions benchmark_results.md

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions configs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,9 @@ Please follow the outline structure and **table format** shown in [densenet/READ

<div align="center">

| model | top-1 (%) | top-5 (%) | params (M) | batch size | cards | ms/step | jit_level | recipe | download |
| ----------- | --------- | --------- | ---------- | ---------- | ----- | ------- | --------- | --------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- |
| densenet121 | 75.67 | 92.77 | 8.06 | 32 | 8 | 47,34 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_121_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/densenet/densenet121-bf4ab27f-910v2.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ----------- | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | --------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- |
| densenet121 | 8.06 | 8 | 32 | 224x224 | O2 | 300s | 47,34 | 5446.81 | 75.67 | 92.77 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_121_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/densenet/densenet121-bf4ab27f-910v2.ckpt) |

</div>

Expand Down
17 changes: 11 additions & 6 deletions configs/bit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,11 @@

> [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370)
## Requirements
| mindspore | ascend driver | firmware | cann toolkit/kernel |
| :-------: | :-----------: | :---------: | :-----------------: |
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |

## Introduction

Transfer of pre-trained representations improves sample efficiency and simplifies hyperparameter tuning when training deep neural networks for vision.
Expand All @@ -13,23 +18,23 @@ BiT use GroupNorm combined with Weight Standardisation instead of BatchNorm. Sin
too low. 5) With BiT fine-tuning, good performance can be achieved even if there are only a few examples of each type on natural images.[[1, 2](#References)]


## Results
## Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

- ascend 910* with graph mode
- Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode

*coming soon*

- ascend 910 with graph mode
- Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode


<div align="center">


| model | top-1 (%) | top-5 (%) | params(M) | batch size | cards | ms/step | jit_level | recipe | download |
| ------------ | --------- | --------- | --------- | ---------- | ----- |---------| --------- | ---------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- |
| bit_resnet50 | 76.81 | 93.17 | 25.55 | 32 | 8 | 74.52 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet50_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet50-1e4795a4.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ------------ | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | ---------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- |
| bit_resnet50 | 25.55 | 8 | 32 | 224x224 | O2 | 146s | 74.52 | 3413.33 | 76.81 | 93.17 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/bit/bit_resnet50_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/bit/BiT_resnet50-1e4795a4.ckpt) |


</div>
Expand Down
17 changes: 11 additions & 6 deletions configs/cmt/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,11 @@

> [CMT: Convolutional Neural Networks Meet Vision Transformers](https://arxiv.org/abs/2107.06263)
## Requirements
| mindspore | ascend driver | firmware | cann toolkit/kernel |
| :-------: | :-----------: | :---------: | :-----------------: |
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |

## Introduction

CMT is a method to make full use of the advantages of CNN and transformers so that the model could capture long-range
Expand All @@ -10,22 +15,22 @@ and depthwise convolution and pointwise convolution like MobileNet. By combing t
on ImageNet-1K dataset.


## Results
## Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

- ascend 910* with graph mode
- Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode

*coming soon*

- ascend 910 with graph mode
- Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode

<div align="center">


| model | top-1 (%) | top-5 (%) | params(M) | batch size | cards | ms/step | jit_level | recipe | download |
| --------- | --------- | --------- | --------- | ---------- | ----- |---------| --------- | ------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| cmt_small | 83.24 | 96.41 | 26.09 | 128 | 8 | 500.64 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/cmt/cmt_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/cmt/cmt_small-6858ee22.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ---------- | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | ------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| cmt_small | 26.09 | 8 | 128 | 224x224 | O2 | 1268s | 500.64 | 2048.01 | 83.24 | 96.41 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/cmt/cmt_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/cmt/cmt_small-6858ee22.ckpt) |


</div>
Expand Down
17 changes: 11 additions & 6 deletions configs/coat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,27 +2,32 @@

> [Co-Scale Conv-Attentional Image Transformers](https://arxiv.org/abs/2104.06399v2)
## Requirements
| mindspore | ascend driver | firmware | cann toolkit/kernel |
| :-------: | :-----------: | :---------: | :-----------------: |
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |

## Introduction

Co-Scale Conv-Attentional Image Transformer (CoaT) is a Transformer-based image classifier equipped with co-scale and conv-attentional mechanisms. First, the co-scale mechanism maintains the integrity of Transformers' encoder branches at individual scales, while allowing representations learned at different scales to effectively communicate with each other. Second, the conv-attentional mechanism is designed by realizing a relative position embedding formulation in the factorized attention module with an efficient convolution-like implementation. CoaT empowers image Transformers with enriched multi-scale and contextual modeling capabilities.

## Results
## Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

- ascend 910* with graph mode
- Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode

*coming soon*


- ascend 910 with graph mode
- Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode

<div align="center">


| model | top-1 (%) | top-5 (%) | params (M) | batch size | cards | ms/step | jit_level | recipe | Weight |
| --------- | --------- | --------- | ---------- | ---------- | ----- |---------| --------- | -------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
| coat_tiny | 79.67 | 94.88 | 5.50 | 32 | 8 | 254.95 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_tiny-071cb792.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ---------- | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | -------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
| coat_tiny | 5.50 | 8 | 32 | 224x224 | O2 | 543s | 254.95 | 1003.92 | 79.67 | 94.88 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/coat/coat_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/coat/coat_tiny-071cb792.ckpt) |

</div>

Expand Down
23 changes: 14 additions & 9 deletions configs/convit/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,11 @@
# ConViT
> [ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases](https://arxiv.org/abs/2103.10697)
## Requirements
| mindspore | ascend driver | firmware | cann toolkit/kernel |
| :-------: | :-----------: | :---------: | :-----------------: |
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |

## Introduction

ConViT combines the strengths of convolutional architectures and Vision Transformers (ViTs).
Expand All @@ -20,30 +25,30 @@ while offering a much improved sample efficiency.[[1](#references)]
</p>


## Results
## Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

- ascend 910* with graph mode
- Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode


<div align="center">


| model | top-1 (%) | top-5 (%) | params (M) | batch size | cards | ms/step | jit_level | recipe | download |
| ----------- | --------- | --------- | ---------- | ---------- | ----- | ------- | --------- | ------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------- |
| convit_tiny | 73.79 | 91.70 | 5.71 | 256 | 8 | 226.51 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/convit/convit_tiny-1961717e-910v2.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ----------- | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | ------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------- |
| convit_tiny | 5.71 | 8 | 256 | 224x224 | O2 | 153s | 226.51 | 9022.03 | 73.79 | 91.70 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindcv/convit/convit_tiny-1961717e-910v2.ckpt) |

</div>

- ascend 910 with graph mode
- Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode

<div align="center">


| model | top-1 (%) | top-5 (%) | params (M) | batch size | cards | ms/step | jit_level | recipe | download |
| ----------- | --------- | --------- | ---------- | ---------- | ----- | ------- | --------- | ------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| convit_tiny | 73.66 | 91.72 | 5.71 | 256 | 8 | 231.62 | O2 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_tiny-e31023f2.ckpt) |
| model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
| ----------- | --------- | ----- | ---------- | ---------- | --------- | ------------- | ------- | ------- | -------- | -------- | ------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------- |
| convit_tiny | 5.71 | 8 | 256 | 224x224 | O2 | 133s | 231.62 | 8827.59 | 73.66 | 91.72 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convit/convit_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convit/convit_tiny-e31023f2.ckpt) |

</div>

Expand Down
Loading

0 comments on commit bd1dbd5

Please sign in to comment.