Paper: Squeeze-and-Excitation Networks
This code takes ImageNet dataset as example. You can download ImageNet dataset and put them as follows. I only provide ILSVRC2012_dev_kit_t12
due to the restriction of memory, in other words, you need download ILSVRC2012_img_train
and ILSVRC2012_img_val
.
├── train.py # train script
├── se_resnet.py # network of se_resnet
├── se_resnext.py # network of se_resnext
├── read_ImageNetData.py # ImageNet dataset read script
├── ImageData # train and validation data
├── ILSVRC2012_img_train
├── n01440764
├── ...
├── n15075141
├── ILSVRC2012_img_val
├── ILSVRC2012_dev_kit_t12
├── data
├── ILSVRC2012_validation_ground_truth.txt
├── meta.mat # the map between train file name and label
- If you want to train from scratch, you can run as follows:
python train.py --network se_resnext_50 --batch-size 256 --gpus 0,1,2,3
parameter --network
can be se_resnet_18
or se_resnet_34
or se_resnet_50
or se_resnet_101
or se_resnet_152
or se_resnext_50
or se_resnext_101
or se_resnext_152
.
- If you want to train from one checkpoint, you can run as follows(for example train from
epoch_4.pth.tar
, the--start-epoch
parameter is corresponding to the epoch of the checkpoint):
python train.py --network se_resnext_50 --batch-size 256 --gpus 0,1,2,3 --resume output/epoch_4.pth.tar --start-epoch 4