Skip to content

miraliahmadli/MoCapSolver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MoCap Data Denoising

Marker-Based Motion Capture Data Denoising

This repository contains unofficial implementation of Robust solving of optical motion capture data by denoising and MoCap-Solver: A Neural Solver for Optical Motion Capture Data papers. For official implementation of MocapSolver paper, please refer to Official Repo

Docker

To build docker image

docker build -t mocap-env -f docker/Dockerfile .

To run the docker image creating a container (this command connects the current directory to /host, all the other changes are removed)

docker run --rm -it --runtime=nvidia --ipc=host -v $PWD:/host --network=host --name mocap-dev mocap-env /bin/sh -c 'cd /host; Xvfb :5 -screen 0 1920x1080x24 & export DISPLAY=:5; bash'

Dataset

Synthetic Dataset

Please follow the steps in Official Implementation

Note: Data has to preprocessed further, such as converting joint orientations from global to local and etc.

CMU Dataset

To fetch the dataset

sh dataset/get_dataset.sh

To reduce the number of markers to 41 and remove one subject from two subjects (Could take long)

python dataset/c3d_cleaner.py

To parse asf/amc and save global transformation matrices of each frame into npy format (Could take long, must be optimized)

python dataset/asfamc2npy.py

To create a csv metadata of the dataset (already created .csv file included in the 'dataset/' directory)

python dataset/create_meta.py

Dataset Hierarchy

Tree structure of the skeleton for the joint order in the dataset

Please specify the hierarchy of the dataset you are using and save it to .txt file.

Visualization

Use visualization function in tools/viz.py

Usage:

from tools.viz import visualize
Xs = numpy array of size n x frames x num_marker x 3] # n different marker sequence
colors_X = # n colors for each sequence
Ys = numpy array of size n x frames x num_joint x 3 x 4 # similar to X
colors_Y = # n colors for each sequence
res = [1024, 784] # video resolution
fps_vid = 120 # fps

visualize(Xs=Xs, Ys=Ys, colors_X=colors_X, colors_Y=colors_Y, res=res, fps_vid=fps_vid)

Training Model

  1. Create xxx.json file and specify parameters
  2. Specify which model you are training
  3. Run python main.py --model [Model name] --config [path to xxx.json]

Examples

Training CMU dataset with Holden's model

python main.py --model RobustSolver --config configs/holden_cmu.json

Training Synthetic dataset with MocapSolver model

python main.py --model MocapSolver --config configs/ms_config.json

Testing model

Similar to training with --mode test.

python main.py --model RobustSolver --config configs/holden_cmu.json --mode test

python main.py --model MocapSolver --config configs/ms_config.json --mode test

References

Releases

No releases published

Packages

No packages published

Languages