Skip to content

pytorch implementaion of Relational Graph Convolutional Networks

Notifications You must be signed in to change notification settings

mjDelta/relation-gcn-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

relation-gcn-pytorch

Pytorch implementation of 'Modeling relational data with graph convolutional networks', ESWC, 2018.

Dependencies

  • pytorch 1.1.0
  • numpy 1.16.4
  • scipy 1.3.0

Results

AIFB

Epoch 0: train loss 1.34 val loss 1.31 val acc0.42
Epoch 10: train loss 0.12 val loss 0.2 val acc0.94
Epoch 20: train loss 0.0 val loss 0.35 val acc0.86
Epoch 30: train loss 0.0 val loss 0.51 val acc0.89
Epoch 40: train loss 0.0 val loss 0.51 val acc0.89

References

[1] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference. Springer, Cham, 2018: 593-607.

About

pytorch implementaion of Relational Graph Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages