-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStokeselvis.py
191 lines (177 loc) · 11.4 KB
/
Stokeselvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
from scipy.sparse import linalg
from scipy import sparse
def add_to_sparse(x,y,value,row,col,data):
row.append(x)
col.append(y)
data.append(value)
def return_sparse_matrix_Stokes(j_res, i_res, dx, dy, eta_s, eta_n, rho, gx_0, gy_0, sxx, sxy, kbond, kcont, p0cell, Vbound={},
lower_boundary="slip", upper_boundary="slip",
left_boundary="slip", right_boundary="slip"):
# Constructing sparse matrix for solving: x-Stokes, y-Stokes and continuity equations
# x-Stokes: ETA(d2vx/dx2+d2vx/dy2)-dP/dx=0
# y-Stokes: ETA(d2vy/dx2+d2vy/dy2)-dP/dy=gy*RHO
# continuity: dvx/dx+dvy/dy=0
kbond = 4*eta_s.min()/((dx+dy)**2)
kcont = 2*eta_s.min()/(dx+dy)
row = []
col = []
data = []
# define grid for messing with indexes
k = np.linspace(0,(j_res*i_res-1),(j_res*i_res)).astype('int')
k.shape = ((i_res,j_res))
vector = np.ones((3*i_res,j_res))
vector = vector.reshape((3*j_res*i_res,1))
P = lambda k: 3*k
Vx = lambda k: 3*k+1
Vy = lambda k: 3*k+2
dx2,dy2 = dx**2, dy**2
for j in range(0,j_res):
for i in range(0,i_res):
# Continuity equation
# Ghost pressure unknowns (i=0, j=0): P(i,j)=0
if i==0 or j==0:
add_to_sparse(P(k[i][j]),P(k[i][j]),1*kbond,row,col,data)
vector[P(k[i][j])] = 0
# Upper and lower left corners dP/dx=0 => P(i,j)-P(i,j+1)=0
elif (i==1 and j==1) or (i==i_res-1 and j==1):
add_to_sparse(P(k[i][j]),P(k[i][j]) , 1*kbond ,row,col,data)
add_to_sparse(P(k[i][j]),P(k[i][j+1]),-1*kbond ,row,col,data)
vector[P(k[i][j])] = 0
# Upper and lower right corners dP/dx=0 => P(i,j)-P(i,j-1)=0
elif (i==1 and j==j_res-1) or (i==i_res-1 and j==j_res-1):
add_to_sparse(P(k[i][j]),P(k[i][j]) , 1*kbond ,row,col,data)
add_to_sparse(P(k[i][j]),P(k[i][j-1]),-1*kbond ,row,col,data)
vector[P(k[i][j])] = 0
# One cell
elif i==1 and j==2:
add_to_sparse(P(k[i][j]),P(k[i][j]),1*kbond ,row,col,data) # Coefficient for P(i,j)
vector[P(k[i][j])] = p0cell # Right-hand-side part
else:
# Internal nodes: dvx/dx+dvy/dy=0
# dvx/dx=(vx(i-1,j)-vx(i-1,j-1))/dx
add_to_sparse(P(k[i][j]),Vx(k[i-1][j]) ,kcont/dx ,row,col,data) # Coefficient for P(i-1,j)
add_to_sparse(P(k[i][j]),Vx(k[i-1][j-1]) ,-kcont/dx ,row,col,data) # Coefficient for P(i-1,j-1)
# dvy/dy=(vy(i,j-1)-vy(i-1,j-1))/dy
add_to_sparse(P(k[i][j]),Vy(k[i ][j-1]) ,kcont/dy ,row,col,data) # Coefficient for P(i,j-1)
add_to_sparse(P(k[i][j]),Vy(k[i-1][j-1]) ,-kcont/dy ,row,col,data) # Coefficient for P(i-1,j-1)
vector[P(k[i][j])] = 0 # Right-hand-side part
# x-Stokes equation
# Ghost Vx unknowns (i=i_res) and boundary nodes (i=0, i=i_res-1, j=0, j=j_res-1)
# Ghost Vx unknowns (i=i_res: Vx(i,j)=0
if i == i_res-1:
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) ,kbond ,row,col,data) # Coefficient for Vx(i,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
# Left and Right boundaries (j=0, j=j_res)
elif (j==0 or j==j_res-1) and i<i_res-1:
# Free slip, No slip: vx(i,j)=0
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) , kbond ,row,col,data) # Coefficient for Vx(i,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
# Upper boundary, iner points (i=0, 0<j<j_res)
elif i==0 and 0<j<j_res-1:
# Free slip dVx/dy=0: Vx(i,j)-Vx(i+1,j)=0
if upper_boundary=="sleep":
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) , kbond ,row,col,data) # Coefficient for Vx(i,j)
add_to_sparse(Vx(k[i][j]),Vx(k[i+1][j]) ,-kbond ,row,col,data) # Coefficient for Vx(i+1,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
## No slip vx=0: vx(i,j)-1/3*vx(i+1,j)=0
else:
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) , kbond ,row,col,data) # Coefficient for Vx(i,j)
add_to_sparse(Vx(k[i][j]),Vx(k[i+1][j]) ,-(1.0/3)*kbond ,row,col,data) #Coefficient for Vx(i+1,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
# Lower boundary, iner points (i=i_res-1, 0<j<j_res)
elif i==i_res-2 and 0<j<j_res-1:
# Free slip dvx/dy=0: vx(i,j)-vx(i-1,j)=0
if lower_boundary=="sleep":
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) , kbond ,row,col,data) # Coefficient for Vx(i,j)
add_to_sparse(Vx(k[i][j]),Vx(k[i-1][j]) ,-kbond ,row,col,data) # Coefficient for Vx(i-1,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
## No slip vx=0: vx(i,j)-1/3*vx(i-1,j)=0
else:
add_to_sparse(Vx(k[i][j]),Vx(k[i][j]) , kbond ,row,col,data) # Coefficient for Vx(i,j)
add_to_sparse(Vx(k[i][j]),Vx(k[i-1][j]) ,-(1.0/3)*kbond ,row,col,data) #Coefficient for Vx(i-1,j)
vector[Vx(k[i][j])] = 0 # Right-hand-side part
elif (i,j) in Vbound:
add_to_sparse(Vx(k[i][j]), Vx(k[i][j]), kbond ,row,col,data)
vector[Vx(k[i][j])] = Vbound[(i,j)][0]*kcont
else:
# Internal nodes: dSxx/dx+dSxy/dy-dP/dx=0
# dSxx/dx=2*etan(i+1,j+1)*(vx(i,j+1)-vx(i,j))/dx^2-2*etan(i+1,j)*(vx(i,j)-vx(i,j-1))/dx^2
add_to_sparse(Vx(k[i,j]),Vx(k[i,j+1]), 2*eta_n[i+1,j+1]/dx2 ,row,col,data) #Coefficient for Vx(i,j+1)
add_to_sparse(Vx(k[i,j]),Vx(k[i,j-1]), 2*eta_n[i+1,j]/dx2 ,row,col,data) #Coefficient for Vx(i,j-1)
add_to_sparse(Vx(k[i,j]),Vx(k[i,j]), -2*eta_n[i+1,j+1]/dx2-2*eta_n[i+1,j]/dx2 ,row,col,data) #Coefficient for Vx(i,j)
#dSxy/dy=etas(i+1,j)*((vx(i+1,j)-vx(i,j))/dy^2+(vy(i+1,j)-vy(i+1,j-1))/dx/dy)-
# -etas(i,j)*((vx(i,j)-vx(i-1,j))/dy^2+(vy(i,j)-vy(i,j-1))/dx/dy)-
add_to_sparse(Vx(k[i,j]),Vx(k[i+1,j]), eta_s[i+1,j]/dy2 ,row,col,data) #Coefficient for Vx(i+1,j)
add_to_sparse(Vx(k[i,j]),Vx(k[i-1,j]), eta_s[i,j]/dy2 ,row,col,data) #Coefficient for Vx(i-1,j)
add_to_sparse(Vx(k[i,j]),Vx(k[i,j]), -eta_s[i+1,j]/dy2-eta_s[i,j]/dy2 ,row,col,data) #Coefficient for Vx(i,j)
add_to_sparse(Vx(k[i,j]),Vy(k[i+1,j]), eta_s[i+1,j]/dx/dy ,row,col,data) #Coefficient for Vy(i+1,j)
add_to_sparse(Vx(k[i,j]),Vy(k[i+1,j-1]),-eta_s[i+1,j]/dx/dy ,row,col,data) #Coefficient for Vy(i+1,j-1)
add_to_sparse(Vx(k[i,j]),Vy(k[i,j]), -eta_s[i,j]/dx/dy ,row,col,data) #Coefficient for Vy(i,j)
add_to_sparse(Vx(k[i,j]),Vy(k[i,j-1]), eta_s[i,j]/dx/dy ,row,col,data) #Coefficient for Vy(i,j-1)
# -dP/dx=(P(i+1,j)-P(i+1,j+1))/dx
add_to_sparse(Vx(k[i][j]),P(k[i+1][j]), kcont/dx ,row,col,data) # Coefficient for P(i+1,j)
add_to_sparse(Vx(k[i][j]),P(k[i+1][j+1]),-kcont/dx ,row,col,data) # Coefficient for P(i+1,j+1)
# Right-hand-side part:0
vector[Vx(k[i][j])] = -gx_0 * (rho[i,j] + rho[i+1,j])/2.0 - (sxx[i+1,j+1] - sxx[i+1,j])/dx - (sxy[i+1,j] - sxy[i,j])/dy # Right-hand-side part
# y-Stokes equation
# Ghost vy unknowns (j=j_res) and boundary nodes (i=0, i=i_res-1, j=0, j=j_res-1)
# Ghost vy unknowns (j=jres: vy(i,j)=0
if j==j_res-1:
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) ,kbond ,row,col,data) # Coefficient for Vy(i,j)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
# Upper and lower boundaries (i=0, i=i_res)
elif (i==0 or i==i_res-1) and j<j_res:
# Free slip, No slip: vy(i,j)=0
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) , kbond ,row,col,data) # Coefficient for Vy(i,j)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
# Left boundary, iner points (j=0, 0<i<i_res)
elif j==0 and 0 < i < i_res-1:
# Free slip dvy/dx=0: vy(i,j)-vy(i,j+1)=0
if left_boundary == "sleep":
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) , kbond ,row,col,data) # Coefficient for Vy(i,j)
add_to_sparse(Vy(k[i][j]),Vy(k[i][j+1]) ,-kbond ,row,col,data) # Coefficient for Vy(i,j+1)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
## No slip vy=0: vy(i,j)-1/3*vy(i,j+1)=0
else:
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) , kbond ,row,col,data) # Coefficient for Vy(i,j)
add_to_sparse(Vy(k[i][j]),Vy(k[i][j+1]) ,-(1.0/3)*kbond ,row,col,data) # Coefficient for Vy(i,j+1)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
# Right boundary, iner points (j=j_res-1, 0<i<i_res)
elif j==j_res-2 and 0 < i <i_res-1:
# Free slip dvy/dx=0: vy(i,j)-vy(i,j-1)=0
if right_boundary=="sleep":
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) , kbond ,row,col,data) # Coefficient for Vy(i,j)
add_to_sparse(Vy(k[i][j]),Vy(k[i][j-1]) ,-kbond ,row,col,data) # Coefficient for Vy(i,j-1)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
## No slip vy=0: vy(i,j)-1/3*vy(i,j-1)=0
else:
add_to_sparse(Vy(k[i][j]),Vy(k[i][j]) , kbond ,row,col,data) # Coefficient for Vy(i,j)
add_to_sparse(Vy(k[i][j]),Vy(k[i][j-1]) ,-(1.0/3)*kbond ,row,col,data) # Coefficient for Vy(i,j-1)
vector[Vy(k[i][j])] = 0 # Right-hand-side part
elif (i,j) in Vbound:
add_to_sparse(Vy(k[i][j]), Vy(k[i][j]), kbond ,row,col,data)
vector[Vy(k[i][j])] = Vbound[(i,j)][1]*kcont
else:
# Internal nodes: dSyy/dy+dSxy/dx-dP/dy=-gy*RHO
#dSyy/dy=2*etan(i+1,j+1)*(vy(i+1,j)-vy(i,j))/dy^2-2*etan(i,j+1)*(vy(i,j)-vy(i-1,j))/dy^2
add_to_sparse(Vy(k[i,j]),Vy(k[i+1,j]), 2*eta_n[i+1,j+1]/dy2 ,row,col,data) #Coefficient for Vy(i+1,j)
add_to_sparse(Vy(k[i,j]),Vy(k[i-1,j]), 2*eta_n[i,j+1]/dy2 ,row,col,data) #Coefficient for Vy(i-1,j)
add_to_sparse(Vy(k[i,j]),Vy(k[i,j]), -2*eta_n[i+1,j+1]/dy2-2*eta_n[i,j+1]/dy2 ,row,col,data) #Coefficient for Vy(i,j)
#dSxy/dx=etas(i,j+1)*((vy(i,j+1)-vy(i,j))/dx^2+(vx(i,j+1)-vx(i-1,j+1))/dx/dy)-
# -etas(i,j)*((vy(i,j)-vy(i,j-1))/dx^2+(vx(i,j)-vx(i-1,j))/dx/dy)-
add_to_sparse(Vy(k[i,j]),Vy(k[i,j+1]), eta_s[i,j+1]/dx2 ,row,col,data) #Coefficient for Vy(i+1,j)
add_to_sparse(Vy(k[i,j]),Vy(k[i,j-1]), eta_s[i,j]/dx2 ,row,col,data) #Coefficient for Vy(i-1,j)
add_to_sparse(Vy(k[i,j]),Vy(k[i,j]), -eta_s[i,j+1]/dx2-eta_s[i,j]/dx2 ,row,col,data) #Coefficient for Vy(i,j)
add_to_sparse(Vy(k[i,j]),Vx(k[i,j+1]), eta_s[i,j+1]/dx/dy ,row,col,data) #Coefficient for Vx(i+1,j)
add_to_sparse(Vy(k[i,j]),Vx(k[i-1,j+1]),-eta_s[i,j+1]/dx/dy ,row,col,data) #Coefficient for Vx(i+1,j-1)
add_to_sparse(Vy(k[i,j]),Vx(k[i,j]), -eta_s[i,j]/dx/dy ,row,col,data) #Coefficient for Vx(i,j)
add_to_sparse(Vy(k[i,j]),Vx(k[i-1,j]), eta_s[i,j]/dx/dy ,row,col,data) #Coefficient for Vx(i,j-1)
# -dP/dy=(P(i,j+1)-P(i+1,j+1))/dx
add_to_sparse(Vy(k[i][j]),P(k[i][j+1]), kcont/dy ,row,col,data) # Coefficient for P(i,j+1)
add_to_sparse(Vy(k[i][j]),P(k[i+1][j+1]),-kcont/dy ,row,col,data) # Coefficient for P(i+1,j+1)
# Right part: -RHO*gy
vector[Vy(k[i][j])] = -gy_0 * (rho[i,j] + rho[i,j+1])/2.0 + (sxx[i+1,j+1] - sxx[i,j+1])/dy - (sxy[i,j+1] - sxy[i,j])/dx # Right-hand-side part
mtx = sparse.coo_matrix((data, (row, col)), shape=(3*j_res*i_res, 3*j_res*i_res))
mtx = mtx.tocsr()
return mtx, vector