Skip to content

Implementation of various ensemble Kalman Filter data assimilation methods in Julia

License

Notifications You must be signed in to change notification settings

mleprovost/DataAssim.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataAssim

Build Status Linux and macOS Build Status Windows

Coverage Status codecov.io

documentation latest

The packages implements various ensemble Kalman Filter data assimilation methods:

  • Ensemble Sqare Root Filter (EnSRF)
  • Ensemble Sqare Root Filter with serial processsing of the observations (serialEnSRF)
  • Ensemble Transform Kalman Filter (ETKF)
  • Ensemble Transform Kalman Filter (EAKF)
  • Singular Evolutive Interpolated Kalman filter (SEIK)
  • Error-subspace Transform Kalman Filter (ESTKF)
  • Ensemble Kalman Filter (EnKF)

The Julia code is ported from the Matlab/Octave code generated in the frame of the Sangoma project (http://data-assimilation.net/).

Most of the algorithms are described in the review article:

Sanita Vetra-Carvalho, Peter Jan van Leeuwen, Lars Nerger, Alexander Barth, M. Umer Altaf, Pierre Brasseur, Paul Kirchgessner, and Jean-Marie Beckers. State-of-the-a rt stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus A: Dynamic Meteorology and Oceanography, 70(1):1445364, 2018. doi: 10.1080/16000870.2018.1445364.

About

Implementation of various ensemble Kalman Filter data assimilation methods in Julia

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 90.7%
  • Jupyter Notebook 9.3%