All codes for dataset preparation are located at src/datasets_scripts
The codes simply download HuggingFace's Dataset or convert json files downloaded from official source to HuggingFace's Dataset Code for downstream datasets is very short and should be self-explanatory.
Use the following command to download wikipedia english dataset from HuggingFace
python3 src/datasets_scripts/pretrain/wiki_en_dataset.py --output <output_path>
Then use the following command to segment or pack articles in wikipedia english dataset to examples of <sequence_length>
length and stores examples to multiple jsonl files
python3 src/datasets_scripts/pretrain/example_packing.py \
--output_folder <jsonl_files_output_folder> \
--data_file <wiki_en_output_path>/wikipedia.20220301.en/train/ \
--example_pack_length <sequence_length> \
--mp
mp option will use all available cpu cores to preprocess the dataset.
Finally, use the following command to combine all jsonl files
python3 src/datasets_scripts/pretrain/jsonl_to_arrow.py \
--jsonl_folder <jsonl_files_output_folder> \
--output_file <arrow_file_output_path>
You can move some jsonl files from <jsonl_files_output_folder>
to a different folder and use it as validation set.
Both pretraining and finetuning are launched by main.py
. All configuration including training pipeline, model, dataset, data collator, and optimizer are specified in a config file, such as cfgs/roberta/base-512/postnorm.py
python3 main.py --config cfgs/roberta/base-512/postnorm.py
python3 main.py --config cfgs/roberta/base-512/mra2.py
python3 main.py --config cfgs/roberta/base-4k/mra2.py
python3 main.py --config cfgs/roberta/base-512/wikihop/postnorm.py
python3 main.py --config cfgs/roberta/base-512/wikihop/mra2.py
python3 main.py --config cfgs/roberta/base-4k/wikihop/mra2.py