简介
基于CARLA Simulator生成KITTI 2D/3D目标检测数据集格式的仿真数据集。除了对车辆和行人生成Label外,还对仿真环境中的20余种物体生成Label(树木、交通信号灯等)。
数据收集流程
数据集格式
training
|__ calib/ # 相机、雷达等传感器的矫正数据
|__ image/ # 相机产生的RGB图像
|__ label/ # object 的标签
|__ velodyne/ # 激光雷达的测量数据
|__ train.txt
|__ trainval.txt
|__ val.txt
label:
#Values Name Description
----------------------------------------------------------------------------
1 type Describes the type of object: 'Car','Pedestrian',
'TrafficSigns', etc.
1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries
1 occluded Integer (0,1,2,3) indicating occlusion state:
0 = fully visible, 1 = partly occluded
2 = largely occluded
1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
1 score Only for results: Float, indicating confidence in
detection, needed for p/r curves, higher is better.
label种类
label标定的目标主要分为两类,第一类是我们自己生成的actors(Car 和 Pedestrian);第二类是地图中存在的环境目标(None,Buildings,Fences,Other,Pedestrians,Poles,RoadLines,Roads,Sidewalks,TrafficSigns,Vegetation,Vehicles,Walls,Sky,Ground,Bridge,RailTrack,GuardRail,TrafficLight,Static,Dynamic,Water,Terrain)
使用
Carla版本:carla 0.9.12
python generator.py
SynchronyModel.py,场景类,负责建立client,设置server,生成actors,驱动server计算并获取数据
data_utils.py,包含点坐标转换、生成label等工具函数
data_descriptor.py, KITTI格式的描述类
DataSave.py,数据保存类,生成保存数据路径,保存数据
export_utils,保存数据的工具函数
image_converter.py, 图片格式转换函数
visual_utils,可视化工具函数