Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MRG, MAINT: Clean up use of bool, float, int #7917

Merged
merged 3 commits into from
Jun 22, 2020
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/simulation/plot_simulate_evoked_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
###############################################################################
# Generate source time courses from 2 dipoles and the correspond evoked data

times = np.arange(300, dtype=np.float) / raw.info['sfreq'] - 0.1
times = np.arange(300, dtype=np.float64) / raw.info['sfreq'] - 0.1
rng = np.random.RandomState(42)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ def data_fun(times, latency, duration):
# event, the second is not used. The third one is the event id, which is
# different for each of the 4 areas.

times = np.arange(150, dtype=np.float) / info['sfreq']
times = np.arange(150, dtype=np.float64) / info['sfreq']
duration = 0.03
rng = np.random.RandomState(7)
source_simulator = mne.simulation.SourceSimulator(src, tstep=tstep)
Expand Down
2 changes: 1 addition & 1 deletion examples/time_frequency/plot_time_frequency_simulated.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
noise = rng.randn(n_epochs, len(ch_names), n_times)

# Add a 50 Hz sinusoidal burst to the noise and ramp it.
t = np.arange(n_times, dtype=np.float) / sfreq
t = np.arange(n_times, dtype=np.float64) / sfreq
signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal
signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing
on_time = np.logical_and(t >= 0.45, t <= 0.55)
Expand Down
2 changes: 1 addition & 1 deletion mne/beamformer/tests/test_dics.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,7 +260,7 @@ def test_make_dics(tmpdir, _load_forward, idx, mat_tol, vol_tol):
assert isinstance(filters, Beamformer)
assert isinstance(filters_read, Beamformer)
for key in ['tmin', 'tmax']: # deal with strictness of object_diff
setattr(filters['csd'], key, np.float(getattr(filters['csd'], key)))
setattr(filters['csd'], key, np.float64(getattr(filters['csd'], key)))
assert object_diff(filters, filters_read) == ''


Expand Down
2 changes: 1 addition & 1 deletion mne/bem.py
Original file line number Diff line number Diff line change
Expand Up @@ -1341,7 +1341,7 @@ def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
if tag is None:
raise ValueError('Vertex data not found')

res['rr'] = tag.data.astype(np.float) # XXX : double because of mayavi bug
res['rr'] = tag.data.astype(np.float64) # XXX : double because of mayavi
if res['rr'].shape[0] != res['np']:
raise ValueError('Vertex information is incorrect')

Expand Down
2 changes: 1 addition & 1 deletion mne/channels/channels.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ def _set_channel_positions(self, pos, names):
if len(pos) != len(names):
raise ValueError('Number of channel positions not equal to '
'the number of names given.')
pos = np.asarray(pos, dtype=np.float)
pos = np.asarray(pos, dtype=np.float64)
if pos.shape[-1] != 3 or pos.ndim != 2:
msg = ('Channel positions must have the shape (n_points, 3) '
'not %s.' % (pos.shape,))
Expand Down
4 changes: 2 additions & 2 deletions mne/channels/interpolation.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,8 +136,8 @@ def _interpolate_bads_eeg(inst, origin, verbose=None):
inst : mne.io.Raw, mne.Epochs or mne.Evoked
The data to interpolate. Must be preloaded.
"""
bads_idx = np.zeros(len(inst.ch_names), dtype=np.bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=np.bool)
bads_idx = np.zeros(len(inst.ch_names), dtype=bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=bool)

picks = pick_types(inst.info, meg=False, eeg=True, exclude=[])
inst.info._check_consistency()
Expand Down
4 changes: 2 additions & 2 deletions mne/channels/layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ def _read_lout(fname):
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
pos.append(np.array([x, y, dx, dy], dtype=np.float64))
names.append(name)
ids.append(int(cid))

Expand All @@ -147,7 +147,7 @@ def _read_lay(fname):
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
pos.append(np.array([x, y, dx, dy], dtype=np.float64))
names.append(name)
ids.append(int(cid))

Expand Down
2 changes: 1 addition & 1 deletion mne/chpi.py
Original file line number Diff line number Diff line change
Expand Up @@ -557,7 +557,7 @@ def _fit_chpi_amplitudes(raw, time_sl, hpi):
# loads hpi_stim channel
chpi_data = raw[hpi['hpi_pick'], time_sl][0]

ons = (np.round(chpi_data).astype(np.int) &
ons = (np.round(chpi_data).astype(np.int64) &
hpi['on'][:, np.newaxis]).astype(bool)
n_on = ons.all(axis=-1).sum(axis=0)
if not (n_on >= 3).all():
Expand Down
5 changes: 5 additions & 0 deletions mne/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,11 @@ def pytest_configure(config):
ignore:.*trait.*handler.*deprecated.*:DeprecationWarning
ignore:.*rich_compare.*metadata.*deprecated.*:DeprecationWarning
ignore:.*In future, it will be an error for 'np.bool_'.*:DeprecationWarning
ignore:.*`np.bool` is a deprecated alias.*:DeprecationWarning
ignore:.*`np.int` is a deprecated alias.*:DeprecationWarning
ignore:.*`np.float` is a deprecated alias.*:DeprecationWarning
ignore:.*`np.object` is a deprecated alias.*:DeprecationWarning
ignore:.*`np.long` is a deprecated alias:DeprecationWarning
ignore:.*Converting `np\.character` to a dtype is deprecated.*:DeprecationWarning
ignore:.*sphinx\.util\.smartypants is deprecated.*:
ignore:.*pandas\.util\.testing is deprecated.*:
Expand Down
2 changes: 1 addition & 1 deletion mne/connectivity/effective.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ def phase_slope_index(data, indices=None, sfreq=2 * np.pi,
# allocate space for output
out_shape = list(cohy.shape)
out_shape[freq_dim] = n_bands
psi = np.zeros(out_shape, dtype=np.float)
psi = np.zeros(out_shape, dtype=np.float64)

# allocate accumulator
acc_shape = copy.copy(out_shape)
Expand Down
4 changes: 2 additions & 2 deletions mne/connectivity/spectral.py
Original file line number Diff line number Diff line change
Expand Up @@ -980,7 +980,7 @@ def _prepare_connectivity(epoch_block, tmin, tmax, fmin, fmax, sfreq, indices,
raise ValueError('define frequencies of interest using '
'cwt_freqs')
else:
cwt_freqs = cwt_freqs.astype(np.float)
cwt_freqs = cwt_freqs.astype(np.float64)
if any(cwt_freqs > (sfreq / 2.)):
raise ValueError('entries in cwt_freqs cannot be '
'larger than Nyquist (sfreq / 2)')
Expand All @@ -1003,7 +1003,7 @@ def _prepare_connectivity(epoch_block, tmin, tmax, fmin, fmax, sfreq, indices,
5. / np.min(fmin), five_cycle_freq))

# create a frequency mask for all bands
freq_mask = np.zeros(len(freqs_all), dtype=np.bool)
freq_mask = np.zeros(len(freqs_all), dtype=bool)
for f_lower, f_upper in zip(fmin, fmax):
freq_mask |= ((freqs_all >= f_lower) & (freqs_all <= f_upper))

Expand Down
8 changes: 4 additions & 4 deletions mne/cov.py
Original file line number Diff line number Diff line change
Expand Up @@ -846,8 +846,8 @@ def _unpack_epochs(epochs):
# prepare mean covs
n_epoch_types = len(epochs)
data_mean = [0] * n_epoch_types
n_samples = np.zeros(n_epoch_types, dtype=np.int)
n_epochs = np.zeros(n_epoch_types, dtype=np.int)
n_samples = np.zeros(n_epoch_types, dtype=np.int64)
n_epochs = np.zeros(n_epoch_types, dtype=np.int64)

for ii, epochs_t in enumerate(epochs):

Expand Down Expand Up @@ -1757,7 +1757,7 @@ def compute_whitener(noise_cov, info=None, picks=None, rank=None,
nzero = (eig > 0)
eig[~nzero] = 0. # get rid of numerical noise (negative) ones

W = np.zeros((n_chan, 1), dtype=np.float)
W = np.zeros((n_chan, 1), dtype=np.float64)
W[nzero, 0] = 1.0 / np.sqrt(eig[nzero])
# Rows of eigvec are the eigenvectors
W = W * noise_cov['eigvec'] # C ** -0.5
Expand Down Expand Up @@ -1963,7 +1963,7 @@ def _write_cov(fid, cov):
else:
# Store only lower part of covariance matrix
dim = cov['dim']
mask = np.tril(np.ones((dim, dim), dtype=np.bool)) > 0
mask = np.tril(np.ones((dim, dim), dtype=bool)) > 0
vals = cov['data'][mask].ravel()
write_double(fid, FIFF.FIFF_MNE_COV, vals)

Expand Down
2 changes: 1 addition & 1 deletion mne/decoding/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ def _set_cv(cv, estimator=None, X=None, y=None):
# Setup CV
from sklearn import model_selection as models
from sklearn.model_selection import (check_cv, StratifiedKFold, KFold)
if isinstance(cv, (int, np.int)):
if isinstance(cv, (int, np.int64)):
XFold = StratifiedKFold if est_is_classifier else KFold
cv = XFold(n_splits=cv)
elif isinstance(cv, str):
Expand Down
2 changes: 1 addition & 1 deletion mne/decoding/tests/test_receptive_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ def test_time_delay():
_delay_time_series(X, tmin, tmax, sfreq=[1])
# Delays must be int/float
with pytest.raises(TypeError, match='.*complex.*'):
_delay_time_series(X, np.complex(tmin), tmax, 1)
_delay_time_series(X, np.complex128(tmin), tmax, 1)
# Make sure swapaxes works
start, stop = int(round(tmin * isfreq)), int(round(tmax * isfreq)) + 1
n_delays = stop - start
Expand Down
2 changes: 1 addition & 1 deletion mne/dipole.py
Original file line number Diff line number Diff line change
Expand Up @@ -1306,7 +1306,7 @@ def fit_dipole(evoked, cov, bem, trans=None, min_dist=5., n_jobs=1,
# cov = prepare_noise_cov(cov, info_nb, info_nb['ch_names'], verbose=False)
# nzero = (cov['eig'] > 0)
# n_chan = len(info_nb['ch_names'])
# whitener = np.zeros((n_chan, n_chan), dtype=np.float)
# whitener = np.zeros((n_chan, n_chan), dtype=np.float64)
# whitener[nzero, nzero] = 1.0 / np.sqrt(cov['eig'][nzero])
# whitener = np.dot(whitener, cov['eigvec'])

Expand Down
2 changes: 1 addition & 1 deletion mne/epochs.py
Original file line number Diff line number Diff line change
Expand Up @@ -904,7 +904,7 @@ def subtract_evoked(self, evoked=None):
else:
if self._offset is None:
self._offset = np.zeros((len(self.ch_names), len(self.times)),
dtype=np.float)
dtype=np.float64)
self._offset[ep_picks] -= evoked.data[picks]
logger.info('[done]')

Expand Down
10 changes: 5 additions & 5 deletions mne/event.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def pick_events(events, include=None, exclude=None, step=False):
if include is not None:
if not isinstance(include, list):
include = [include]
mask = np.zeros(len(events), dtype=np.bool)
mask = np.zeros(len(events), dtype=bool)
for e in include:
mask = np.logical_or(mask, events[:, 2] == e)
if step:
Expand All @@ -58,7 +58,7 @@ def pick_events(events, include=None, exclude=None, step=False):
elif exclude is not None:
if not isinstance(exclude, list):
exclude = [exclude]
mask = np.ones(len(events), dtype=np.bool)
mask = np.ones(len(events), dtype=bool)
for e in exclude:
mask = np.logical_and(mask, events[:, 2] != e)
if step:
Expand Down Expand Up @@ -432,7 +432,7 @@ def find_stim_steps(raw, pad_start=None, pad_stop=None, merge=0,
if np.any(data < 0):
warn('Trigger channel contains negative values, using absolute value.')
data = np.abs(data) # make sure trig channel is positive
data = data.astype(np.int)
data = data.astype(np.int64)

return _find_stim_steps(data, raw.first_samp, pad_start=pad_start,
pad_stop=pad_stop, merge=merge)
Expand All @@ -452,9 +452,9 @@ def _find_events(data, first_samp, verbose=None, output='onset',
else:
merge = 0

data = data.astype(np.int)
data = data.astype(np.int64)
if uint_cast:
data = data.astype(np.uint16).astype(np.int)
data = data.astype(np.uint16).astype(np.int64)
if data.min() < 0:
warn('Trigger channel contains negative values, using absolute '
'value. If data were acquired on a Neuromag system with '
Expand Down
6 changes: 3 additions & 3 deletions mne/evoked.py
Original file line number Diff line number Diff line change
Expand Up @@ -746,7 +746,7 @@ def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average',
self.first = int(round(tmin * info['sfreq']))
self.last = self.first + np.shape(data)[-1] - 1
self.times = np.arange(self.first, self.last + 1,
dtype=np.float) / info['sfreq']
dtype=np.float64) / info['sfreq']
self.info = info.copy() # do not modify original info
self.nave = nave
self.kind = kind
Expand Down Expand Up @@ -1111,7 +1111,7 @@ def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False):
else:
# Put the old style epochs together
data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
data = data.astype(np.float)
data = data.astype(np.float64)

if first_time is not None and nsamp is not None:
times = first_time + np.arange(nsamp) / info['sfreq']
Expand Down Expand Up @@ -1280,7 +1280,7 @@ def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
raise ValueError('The tmin must be smaller or equal to tmax')

time_win = (times >= tmin) & (times <= tmax)
mask = np.ones_like(data).astype(np.bool)
mask = np.ones_like(data).astype(bool)
mask[:, time_win] = False

maxfun = np.argmax
Expand Down
4 changes: 2 additions & 2 deletions mne/filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def _overlap_add_filter(x, h, n_fft=None, phase='zero', picks=None,
# cost function based on number of multiplications
N = 2 ** np.arange(np.ceil(np.log2(min_fft)),
np.ceil(np.log2(max_fft)) + 1, dtype=int)
cost = (np.ceil(n_x / (N - len(h) + 1).astype(np.float)) *
cost = (np.ceil(n_x / (N - len(h) + 1).astype(np.float64)) *
N * (np.log2(N) + 1))

# add a heuristic term to prevent too-long FFT's which are slow
Expand Down Expand Up @@ -2005,7 +2005,7 @@ def resample(self, sfreq, npad='auto', window='boxcar', n_jobs=1,
lowpass = self.info.get('lowpass')
lowpass = np.inf if lowpass is None else lowpass
self.info['lowpass'] = min(lowpass, sfreq / 2.)
new_times = (np.arange(self._data.shape[-1], dtype=np.float) /
new_times = (np.arange(self._data.shape[-1], dtype=np.float64) /
sfreq + self.times[0])
# adjust indirectly affected variables
if isinstance(self, BaseEpochs):
Expand Down
6 changes: 3 additions & 3 deletions mne/fixes.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,14 +93,14 @@ def _read_geometry(filepath, read_metadata=False, read_stamp=False):
nvert = _fread3(fobj)
nquad = _fread3(fobj)
(fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.)
coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float) / div
coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float64) / div
coords = coords.reshape(-1, 3)
quads = _fread3_many(fobj, nquad * 4)
quads = quads.reshape(nquad, 4)
#
# Face splitting follows
#
faces = np.zeros((2 * nquad, 3), dtype=np.int)
faces = np.zeros((2 * nquad, 3), dtype=np.int64)
nface = 0
for quad in quads:
if (quad[0] % 2) == 0:
Expand All @@ -127,7 +127,7 @@ def _read_geometry(filepath, read_metadata=False, read_stamp=False):
else:
raise ValueError("File does not appear to be a Freesurfer surface")

coords = coords.astype(np.float) # XXX: due to mayavi bug on mac 32bits
coords = coords.astype(np.float64) # XXX: due to mayavi bug on mac 32bits

ret = (coords, faces)
if read_metadata:
Expand Down
2 changes: 1 addition & 1 deletion mne/forward/_make_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -690,7 +690,7 @@ def make_forward_dipole(dipole, bem, info, trans=None, n_jobs=1, verbose=None):
# Check for omissions due to proximity to inner skull in
# make_forward_solution, which will result in an exception
if fwd['src'][0]['nuse'] != len(pos):
inuse = fwd['src'][0]['inuse'].astype(np.bool)
inuse = fwd['src'][0]['inuse'].astype(bool)
head = ('The following dipoles are outside the inner skull boundary')
msg = len(head) * '#' + '\n' + head + '\n'
for (t, pos) in zip(times[np.logical_not(inuse)],
Expand Down
8 changes: 4 additions & 4 deletions mne/forward/forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,12 +175,12 @@ def _block_diag(A, n):
if na % n > 0:
raise ValueError('Width of matrix must be a multiple of n')

tmp = np.arange(ma * bdn, dtype=np.int).reshape(bdn, ma)
tmp = np.arange(ma * bdn, dtype=np.int64).reshape(bdn, ma)
tmp = np.tile(tmp, (1, n))
ii = tmp.ravel()

jj = np.arange(na, dtype=np.int)[None, :]
jj = jj * np.ones(ma, dtype=np.int)[:, None]
jj = np.arange(na, dtype=np.int64)[None, :]
jj = jj * np.ones(ma, dtype=np.int64)[:, None]
jj = jj.T.ravel() # column indices foreach sparse bd

bd = sparse.coo_matrix((A.T.ravel(), np.c_[ii, jj].T)).tocsc()
Expand Down Expand Up @@ -994,7 +994,7 @@ def compute_orient_prior(forward, loose=0.2, verbose=None):
if not (0 <= loose <= 1):
raise ValueError('loose value should be between 0 and 1, '
'got %s.' % (loose,))
orient_prior = np.ones(n_sources, dtype=np.float)
orient_prior = np.ones(n_sources, dtype=np.float64)
if loose > 0.:
if is_fixed_ori:
raise ValueError('loose must be 0. with forward operator '
Expand Down
4 changes: 2 additions & 2 deletions mne/inverse_sparse/_gamma_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def _gamma_map_opt(M, G, alpha, maxit=10000, tol=1e-6, update_mode=1,
M = M.copy()

if gammas is None:
gammas = np.ones(G.shape[1], dtype=np.float)
gammas = np.ones(G.shape[1], dtype=np.float64)

eps = np.finfo(float).eps

Expand Down Expand Up @@ -132,7 +132,7 @@ def denom_fun(x):
gammas = np.repeat(gammas_comb / group_size, group_size)

# compute convergence criterion
gammas_full = np.zeros(n_sources, dtype=np.float)
gammas_full = np.zeros(n_sources, dtype=np.float64)
gammas_full[active_set] = gammas

err = (np.sum(np.abs(gammas_full - gammas_full_old)) /
Expand Down
4 changes: 2 additions & 2 deletions mne/inverse_sparse/mxne_inverse.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@ def mixed_norm(evoked, forward, noise_cov, alpha, loose='auto', depth=0.8,
M_estimated = np.dot(gain[:, active_set], X)

if mask is not None:
active_set_tmp = np.zeros(len(mask), dtype=np.bool)
active_set_tmp = np.zeros(len(mask), dtype=bool)
active_set_tmp[mask] = active_set
active_set = active_set_tmp
del active_set_tmp
Expand Down Expand Up @@ -662,7 +662,7 @@ def tf_mixed_norm(evoked, forward, noise_cov,
M_estimated = np.dot(gain[:, active_set], X)

if mask is not None:
active_set_tmp = np.zeros(len(mask), dtype=np.bool)
active_set_tmp = np.zeros(len(mask), dtype=bool)
active_set_tmp[mask] = active_set
active_set = active_set_tmp
del active_set_tmp
Expand Down
Loading