Skip to content

linear2d_layer_no_bias: add optional argument to disable biases #212

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/nf/nf_layer_constructors.f90
Original file line number Diff line number Diff line change
Expand Up @@ -213,12 +213,14 @@ module function reshape(output_shape) result(res)
!! Resulting layer instance
end function reshape

module function linear2d(out_features) result(res)
module function linear2d(out_features, biases) result(res)
!! Rank-2 (sequence_length, out_features) linear layer constructor.
!! sequence_length is determined at layer initialization, based on the
!! output shape of the previous layer.
integer, intent(in) :: out_features
!! Number of output features
logical, optional :: biases
!! Whether to use biases or not
type(layer) :: res
!! Resulting layer instance
end function linear2d
Expand Down
5 changes: 3 additions & 2 deletions src/nf/nf_layer_constructors_submodule.f90
Original file line number Diff line number Diff line change
Expand Up @@ -163,12 +163,13 @@ module function reshape(output_shape) result(res)
end function reshape


module function linear2d(out_features) result(res)
module function linear2d(out_features, biases) result(res)
integer, intent(in) :: out_features
logical, optional :: biases
type(layer) :: res

res % name = 'linear2d'
allocate(res % p, source=linear2d_layer(out_features))
allocate(res % p, source=linear2d_layer(out_features, biases))

end function linear2d

Expand Down
6 changes: 4 additions & 2 deletions src/nf/nf_linear2d_layer.f90
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@ module nf_linear2d_layer
public :: linear2d_layer

type, extends(base_layer) :: linear2d_layer
integer :: sequence_length, in_features, out_features, batch_size
integer :: sequence_length, in_features, out_features
logical :: use_biases

real, allocatable :: weights(:,:)
real, allocatable :: biases(:)
Expand All @@ -31,8 +32,9 @@ module nf_linear2d_layer
end type linear2d_layer

interface linear2d_layer
module function linear2d_layer_cons(out_features) result(res)
module function linear2d_layer_cons(out_features, biases) result(res)
integer, intent(in) :: out_features
logical, optional, intent(in) :: biases
type(linear2d_layer) :: res
end function linear2d_layer_cons
end interface linear2d_layer
Expand Down
63 changes: 44 additions & 19 deletions src/nf/nf_linear2d_layer_submodule.f90
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,17 @@

contains

module function linear2d_layer_cons(out_features) result(res)
module function linear2d_layer_cons(out_features, biases) result(res)
integer, intent(in) :: out_features
logical, optional, intent(in) :: biases
type(linear2d_layer) :: res

res % out_features = out_features
if (present(biases)) then
res % use_biases = biases
else
res % use_biases = .true.
end if

end function linear2d_layer_cons

Expand All @@ -36,8 +42,10 @@ module subroutine init(self, input_shape)
allocate(self % dw(self % in_features, self % out_features))
self % dw = 0

allocate(self % db(self % out_features))
self % db = 0
if (self % use_biases) then
allocate(self % db(self % out_features))
self % db = 0
end if

end subroutine init

Expand All @@ -48,9 +56,11 @@ pure module subroutine forward(self, input)
integer :: i

self % output(:,:) = matmul(input(:,:), self % weights)
do concurrent(i = 1:self % sequence_length)
self % output(i,:) = self % output(i,:) + self % biases
end do
if (self % use_biases) then
do concurrent(i = 1:self % sequence_length)
self % output(i,:) = self % output(i,:) + self % biases
end do
end if

end subroutine forward

Expand All @@ -64,7 +74,9 @@ pure module subroutine backward(self, input, gradient)
integer :: i

self % dw = self % dw + matmul(transpose(input(:,:)), gradient(:,:))
self % db = self % db + sum(gradient(:,:), 1)
if (self % use_biases) then
self % db = self % db + sum(gradient(:,:), 1)
end if
self % gradient(:,:) = matmul(gradient(:,:), transpose(self % weights))
end subroutine backward

Expand All @@ -74,7 +86,10 @@ pure module function get_num_params(self) result(num_params)
integer :: num_params

! Number of weights times number of biases
num_params = self % in_features * self % out_features + self % out_features
num_params = self % in_features * self % out_features
if (self % use_biases) then
num_params = num_params + self % out_features
end if

end function get_num_params

Expand All @@ -87,10 +102,14 @@ module function get_params(self) result(params)

w_(1: product(shape(self % weights))) => self % weights

params = [ &
w_, &
self % biases &
]
if (self % use_biases) then
params = [ &
w_, &
self % biases &
]
else
params = w_
end if

end function get_params

Expand All @@ -103,10 +122,14 @@ module function get_gradients(self) result(gradients)

dw_(1: product(shape(self % dw))) => self % dw

gradients = [ &
dw_, &
self % db &
]
if (self % use_biases) then
gradients = [ &
dw_, &
self % db &
]
else
gradients = dw_
end if

end function get_gradients

Expand All @@ -127,10 +150,12 @@ module subroutine set_params(self, params)
p_(1:self % in_features, 1:self % out_features) => params(1 : n)
self % weights = p_

! reshape the biases
self % biases = params(n + 1 : n + self % out_features)
if (self % use_biases) then
! reshape the biases
self % biases = params(n + 1 : n + self % out_features)
end if
end associate

end subroutine set_params

end submodule nf_linear2d_layer_submodule
end submodule nf_linear2d_layer_submodule