Torch7 code for training a CNN for semantic and instance segmentation of leaves.
Directory | Content |
---|---|
CNN | Core CNN code |
data | Training data |
shells | various bash shells |
install dependencies
> shells/dependencies.sh
We used Plant Phenotyping DataSet for training. See Plant-phenotyping and how it was collected. Download the dataset and copy to
> $ROOT/data
see dataset CLI argument for adjusting the path to desired location.
See opts.lua for CLI options.
> th -i main.lua
To start anew:
> rm -rf $ROOT/CNN/results/
> rm $ROOT/data/NLL_trainData.t7 and/or rm $ROOT/data/BCE_trainData.t7
> th main.lua
To generate data only:
> rm -rf $ROOT/CNN/results/
> rm $ROOT/data/NLL_trainData.t7 and/or rm $ROOT/data/BCE_trainData.t7
> th main.lua -genDataOnly
To see datasets:
> rm -rf $ROOT/CNN/results/
> rm $ROOT/data/NLL_trainData.t7 and/or rm $ROOT/data/BCE_trainData.t7
> qlua main.lua
See inference.lua for CLI options.
> th -i inference.lua
-
DEEP-PLANT: PLANT IDENTIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS
-
Fine-tuning Deep Convolutional Networks for Plant Recognition
-
Instance-aware Semantic Segmentation via Multi-task Network Cascades
-
Leafsnap: A Computer Vision System for Automatic Plant Species Identification code
- patch-based
- post process with CRF