Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add transformation method to hf_causal_lm #1383

Merged
merged 8 commits into from
Jul 23, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 21 additions & 51 deletions llmfoundry/models/hf/hf_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
Any,
Dict,
List,
Mapping,
Optional,
Tuple,
Union,
Expand All @@ -23,7 +22,6 @@
from transformers import (
AutoConfig,
AutoModelForCausalLM,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
)
Expand All @@ -36,7 +34,7 @@
from llmfoundry.models.hf.model_wrapper import HuggingFaceModelWithFSDP
from llmfoundry.models.layers.attention import is_flash_v2_installed
from llmfoundry.models.utils import init_empty_weights
from llmfoundry.utils.config_utils import get_hf_config_value
from llmfoundry.utils.config_utils import set_config_overrides

if TYPE_CHECKING:
from peft import PeftConfig, PeftModel
Expand Down Expand Up @@ -105,9 +103,13 @@ def __init__(
config_overrides=config_overrides,
load_in_8bit=load_in_8bit,
pretrained=pretrained,
prepare_for_fsdp=True,
prepare_for_fsdp=False,
)

model = self.transform_model(model)

ComposerHFCausalLM.prepare_inner_model(model, init_device)

train_metrics, eval_metrics = ComposerHFCausalLM.build_metrics(
use_train_metrics=use_train_metrics,
additional_train_metrics=additional_train_metrics,
Expand All @@ -121,7 +123,7 @@ def __init__(

peft_config_object = None
if peft_config is not None:
peft_config_object = self._get_peft_config(peft_config)
peft_config_object = self.get_peft_config(peft_config)

# Set up config args for the model construction and base classes
super().__init__(
Expand All @@ -135,6 +137,17 @@ def __init__(
should_save_peft_only=should_save_peft_only,
)

def transform_model(self, model: PreTrainedModel) -> PreTrainedModel:
dakinggg marked this conversation as resolved.
Show resolved Hide resolved
irenedea marked this conversation as resolved.
Show resolved Hide resolved
"""Transforms the model after initialization.

Args:
model (PreTrainedModel): The model to transform.

Returns:
PreTrainedModel: The transformed model.
"""
return model

@staticmethod
def build_metrics(
use_train_metrics: bool,
Expand Down Expand Up @@ -259,50 +272,7 @@ def _autoset_attn_implementation_monkeypatch(
_autoset_attn_implementation_monkeypatch,
)

# set config overrides
for k, v in config_overrides.items():
if not hasattr(config, k):
raise ValueError(
f'config does not have attribute "{k}" to override ({k}: {v}).',
)

attr = getattr(config, k)
# attempt to disallow typos in nested configs
if isinstance(attr, Mapping):
extra_keys = [_k for _k in v.keys() if _k not in attr.keys()]
if extra_keys:
raise ValueError(
f'Config dict override got unknown keys. ' +
f'Extra keys: {extra_keys}. ' +
f'Expected (a subset of) keys: {list(attr.keys())}.',
)
getattr(config, k).update(v)
# necessary case to allow for rope_scaling to be overriden in llama config
elif attr is None and isinstance(v, Mapping):
setattr(config, k, {})
getattr(config, k).update(v)
elif isinstance(attr, PretrainedConfig):
if not isinstance(v, Mapping):
raise ValueError(
f'Expected a dictionary for config override {k}, but got {v}.',
)

for _k, _v in v.items():
if not hasattr(attr, _k):
raise ValueError(
f'config does not have attribute "{_k}" to override ({k}: {_k}: {_v}).',
)
setattr(attr, _k, _v)
else:
setattr(config, k, v)

if hasattr(config, 'attn_config') and get_hf_config_value(
config.attn_config,
'seq_parallel_world_size',
) is not None:
raise NotImplementedError(
'Sequence Parallelism is not supported for HuggingFace models.',
)
set_config_overrides(config, config_overrides)

# We need to have all non-zero local ranks be not-pretrained
# Rank 0 will still be pretrained, and distribute the weights appropriately
Expand Down Expand Up @@ -395,10 +365,10 @@ def _autoset_attn_implementation_monkeypatch(

if prepare_for_fsdp:
irenedea marked this conversation as resolved.
Show resolved Hide resolved
ComposerHFCausalLM.prepare_inner_model(model, init_device)

return model

@staticmethod
def _get_peft_config(peft_config_dict: Dict[str, Any]) -> 'PeftConfig':
def get_peft_config(self, peft_config_dict: Dict[str, Any]) -> 'PeftConfig':
irenedea marked this conversation as resolved.
Show resolved Hide resolved
if peft_installed:
from peft import LoraConfig
peft_type = peft_config_dict.get('peft_type', '')
Expand Down
42 changes: 42 additions & 0 deletions llmfoundry/utils/config_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -812,3 +812,45 @@ def _verify_uc_path(path: str) -> bool:
f'but your `UCVolumeDatasetSource` might be invalid.',
)
return False


def set_config_overrides(
config: PretrainedConfig,
config_overrides: Dict[str, Any],
):
# set config overrides
for k, v in config_overrides.items():
if not hasattr(config, k):
raise ValueError(
f'config does not have attribute "{k}" to override ({k}: {v}).',
)

attr = getattr(config, k)
# attempt to disallow typos in nested configs
if isinstance(attr, Mapping):
extra_keys = [_k for _k in v.keys() if _k not in attr.keys()]
if extra_keys:
raise ValueError(
f'Config dict override got unknown keys. ' +
f'Extra keys: {extra_keys}. ' +
f'Expected (a subset of) keys: {list(attr.keys())}.',
)
getattr(config, k).update(v)
# necessary case to allow for rope_scaling to be overriden in llama config
elif attr is None and isinstance(v, Mapping):
setattr(config, k, {})
getattr(config, k).update(v)
elif isinstance(attr, PretrainedConfig):
if not isinstance(v, Mapping):
raise ValueError(
f'Expected a dictionary for config override {k}, but got {v}.',
)

for _k, _v in v.items():
if not hasattr(attr, _k):
raise ValueError(
f'config does not have attribute "{_k}" to override ({k}: {_k}: {_v}).',
)
setattr(attr, _k, _v)
else:
setattr(config, k, v)
77 changes: 77 additions & 0 deletions tests/models/hf/test_hf_transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Copyright 2024 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

from typing import Any, Dict, Optional

import pytest
from composer.models.huggingface import maybe_get_underlying_model
from peft import PeftConfig, PeftModel
from transformers import LlamaForCausalLM, PreTrainedModel

from llmfoundry.models.hf.hf_causal_lm import ComposerHFCausalLM
from llmfoundry.models.utils import init_empty_weights


@pytest.mark.gpu
@pytest.mark.parametrize(
'peft_config',
[
None,
{
'peft_type': 'LORA',
'task_type': 'CAUSAL_LM',
'lora_alpha': 32,
'r': 2,
'target_modules': [
'q_proj',
'k_proj',
'v_proj',
],
},
],
)
def test_hf_transform(peft_config: Optional[dict]):
model_cfg = {
'pretrained_model_name_or_path': 'codellama/CodeLlama-7b-hf',
'config_overrides': {
'num_hidden_layers': 2,
'hidden_size': 32,
'intermediate_size': 64,
},
'pretrained': False,
'peft_config': peft_config,
'init_device': 'meta',
'tokenizer': 'codellama/CodeLlama-7b-hf',
}

class TransformedHFCausalLM(ComposerHFCausalLM):

def transform_model(self, model: PreTrainedModel) -> PreTrainedModel:
assert isinstance(model, LlamaForCausalLM)
with init_empty_weights():
model.config.num_hidden_layers = 1
new_model = type(model)(model.config)
return new_model

def get_peft_config(
self,
peft_config_dict: Dict[str, Any],
) -> PeftConfig:
print('GOT PEFT CONFIG')
irenedea marked this conversation as resolved.
Show resolved Hide resolved
peft_config_dict['target_modules'] = ['o_proj']
return super().get_peft_config(peft_config_dict)

composer_model = TransformedHFCausalLM(**model_cfg)
model = composer_model.model
inner_model = maybe_get_underlying_model(model)

if peft_config:
peft_model = composer_model.model
assert isinstance(peft_model, PeftModel)

target_modules = peft_model.peft_config[peft_model.active_adapter
].target_modules
assert list(target_modules) == ['o_proj']

assert isinstance(inner_model, LlamaForCausalLM)
assert inner_model.config.num_hidden_layers == 1
Loading