Skip to content

mpolinowski/pytorch-jupyter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Containerized PyTorch Dev Workflow

Develop your PyTorch models inside the official PyTorch container image with Jupyter Notebooks.

Variations:

Running the Container

Let's build this custom image with:

docker build -t pytorch-jupyter . -f Dockerfile

I can now create the container and mount my working directory into the container WORKDIR to get started:

docker run --gpus all -ti --rm \
    -v $(pwd):/opt/app -p 8888:8888 \
    --name pytorch-jupyter \
    pytorch-jupyter:latest
[C 2023-08-21 08:47:56.598 ServerApp] 
    
    To access the server, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/jpserver-7-open.html
    Or copy and paste one of these URLs:
        http://e7f849cdd75e:8888/tree?token=8d72a759100e2c2971c4266bbcb8c6da5f743015eecd5255
        http://127.0.0.1:8888/tree?token=8d72a759100e2c2971c4266bbcb8c6da5f743015eecd5255

Verify PyTorch

Containerized PyTorch Dev Workflow

Troubleshooting

ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm).

Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g. for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to nvidia-docker run.

docker run --ipc=host --gpus all -ti --rm \
    -v $(pwd):/opt/app -p 8888:8888 \
    --name pytorch-jupyter \
    pytorch-jupyter:latest

Releases

No releases published

Packages

No packages published