-
-
Notifications
You must be signed in to change notification settings - Fork 95
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for running some key
bitops
functions on integer Tensors
While we already supported most of nim's std/math features in Arraymancer, we did not support any of the std/bitops operators and procedures yet. These are very useful to implement some important algorithms such as gray coding and others. This commit adds some of the most important std/bitops features. These will soon be used in `impulse` to implement some new algorithms.
- Loading branch information
1 parent
35adfc1
commit dbdb90e
Showing
3 changed files
with
198 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# Copyright 2017 the Arraymancer contributors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import ./data_structure, | ||
./higher_order_applymap, | ||
./shapeshifting, | ||
./ufunc | ||
import std / bitops | ||
|
||
export bitops | ||
|
||
proc `shr`*[T1, T2: SomeInteger](t: Tensor[T1], value: T2): Tensor[T1] {.noinit.} = | ||
## Broadcasted tensor-value `shr` (i.e. shift right) operator | ||
## | ||
## This is similar to numpy's `right_shift` and Matlab's `bitsra` | ||
## (or `bitshift` with a positive shift value). | ||
t.map_inline(x shr value) | ||
|
||
proc `shr`*[T1, T2: SomeInteger](value: T1, t: Tensor[T2]): Tensor[T2] {.noinit.} = | ||
## Broadcasted value-tensor `shr` (i.e. shift right) operator | ||
## | ||
## This is similar to numpy's `right_shift` and Matlab's `bitsra` | ||
## (or `bitshift` with a positive shift value). | ||
t.map_inline(value shr x) | ||
|
||
proc `shr`*[T: SomeInteger](t1, t2: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Tensor element-wise `shr` (i.e. shift right) broadcasted operator | ||
## | ||
## This is similar to numpy's `right_shift` and Matlab's `bitsra` | ||
## (or `bitshift` with a positive shift value). | ||
let (tmp1, tmp2) = broadcast2(t1, t2) | ||
result = map2_inline(tmp1, tmp2, x shr y) | ||
|
||
proc `shl`*[T1, T2: SomeInteger](t: Tensor[T1], value: T2): Tensor[T1] {.noinit.} = | ||
## Broadcasted tensor-value `shl` (i.e. shift left) operator | ||
## | ||
## This is similar to numpy's `left_shift` and Matlab's `bitsla` | ||
## (or `bitshift` with a negative shift value). | ||
t.map_inline(x shl value) | ||
|
||
proc `shl`*[T1, T2: SomeInteger](value: T1, t: Tensor[T2]): Tensor[T2] {.noinit.} = | ||
## Broadcasted value-tensor `shl` (i.e. shift left) operator | ||
## | ||
## This is similar to numpy's `left_shift` and Matlab's `bitsla` | ||
## (or `bitshift` with a negative shift value). | ||
t.map_inline(value shl x) | ||
|
||
proc `shl`*[T: SomeInteger](t1, t2: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Tensor element-wise `shl` (i.e. shift left) broadcasted operator | ||
## | ||
## This is similar to numpy's `left_shift` and Matlab's `bitsla` | ||
## (or `bitshift` with a negative shift value). | ||
let (tmp1, tmp2) = broadcast2(t1, t2) | ||
result = map2_inline(tmp1, tmp2, x shl y) | ||
|
||
makeUniversal(bitnot, | ||
docSuffix="""Element-wise `bitnot` procedure | ||
This is similar to numpy's `bitwise_not` and Matlab's `bitnot`.""") | ||
|
||
proc bitand*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} = | ||
## Broadcasted tensor-value `bitand` procedure | ||
## | ||
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`. | ||
t.map_inline(bitand(x, value)) | ||
|
||
proc bitand*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Broadcasted value-tensor `bitand` procedure | ||
## | ||
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`. | ||
t.map_inline(bitand(value, x)) | ||
|
||
proc bitand*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Tensor element-wise `bitand` procedure | ||
## | ||
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`. | ||
t1.map2_inline(t2, bitand(x, y)) | ||
|
||
proc bitor*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} = | ||
## Broadcasted tensor-value `bitor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`. | ||
t.map_inline(bitor(x, value)) | ||
|
||
proc bitor*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Broadcasted value-tensor `bitor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`. | ||
t.map_inline(bitor(value, x)) | ||
|
||
proc bitor*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Tensor element-wise `bitor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`. | ||
t1.map2_inline(t2, bitor(x, y)) | ||
|
||
proc bitxor*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} = | ||
## Broadcasted tensor-value `bitxor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`. | ||
t.map_inline(bitxor(x, value)) | ||
|
||
proc bitxor*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Broadcasted value-tensor `bitxor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`. | ||
t.map_inline(bitxor(value, x)) | ||
|
||
proc bitxor*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} = | ||
## Tensor element-wise `bitxor` procedure | ||
## | ||
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`. | ||
t1.map2_inline(t2, bitxor(x, y)) | ||
|
||
makeUniversal(reverseBits, | ||
docSuffix="Element-wise `reverseBits` procedure") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Copyright 2017 the Arraymancer contributors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import ../../src/arraymancer | ||
import std / unittest | ||
|
||
proc main() = | ||
suite "Bitops functions": | ||
test "bitnot": | ||
let t = [0, 1, 57, 1022, -100].toTensor | ||
let expected = [-1, -2, -58, -1023, 99].toTensor | ||
check: t.bitnot == expected | ||
|
||
test "shr": | ||
let t1 = [0, 1, 57, 1022, -100].toTensor | ||
let t2 = [0, 1, 2, 3, 4].toTensor | ||
check: t1 shr 3 == [0, 0, 7, 127, -13].toTensor | ||
check: 1024 shr t2 == [1024, 512, 256, 128, 64].toTensor | ||
check: t1 shr t2 == [0, 0, 14, 127, -7].toTensor | ||
|
||
test "shl": | ||
let t1 = [0, 1, 57, 1022, -100].toTensor | ||
let t2 = [0, 1, 2, 3, 4].toTensor | ||
check: t1 shl 3 == [0, 8, 456, 8176, -800].toTensor | ||
check: 3 shl t2 == [3, 6, 12, 24, 48].toTensor | ||
check: t1 shl t2 == [0, 2, 228, 8176, -1600].toTensor | ||
|
||
test "bitand": | ||
let t1 = [0, 1, 57, 1022, -100].toTensor | ||
let t2 = [0, 2, 7, 15, 11].toTensor | ||
check: bitand(t1, 0b010_110_101) == [0, 1, 49, 180, 148].toTensor | ||
check: bitand(t1, 0b010_110_101) == bitand(0b010_110_101, t1) | ||
check: bitand(t1, t2) == [0, 0, 1, 14, 8].toTensor | ||
check: bitand(t1, t2) == bitand(t1, t2) | ||
|
||
test "bitor": | ||
let t1 = [0, 1, 57, 1022, -100].toTensor | ||
let t2 = [0, 2, 7, 15, 11].toTensor | ||
check: bitor(t1, 0b010_110_101) == [181, 181, 189, 1023, -67].toTensor | ||
check: bitor(t1, 0b010_110_101) == bitor(0b010_110_101, t1) | ||
check: bitor(t1, t2) == [0, 3, 63, 1023, -97].toTensor | ||
check: bitor(t1, t2) == bitor(t1, t2) | ||
|
||
test "bitxor": | ||
let t1 = [0, 1, 57, 1022, -100].toTensor | ||
let t2 = [0, 2, 7, 15, 11].toTensor | ||
check: bitxor(t1, 0b010_110_101) == [181, 180, 140, 843, -215].toTensor | ||
check: bitxor(t1, 0b010_110_101) == bitxor(0b010_110_101, t1) | ||
check: bitxor(t1, t2) == [0, 3, 62, 1009, -105].toTensor | ||
check: bitxor(t1, t2) == bitxor(t1, t2) | ||
|
||
test "reverse_bits": | ||
let t = [0, 1, 57, 1022].toTensor(uint16) | ||
let expected = [0, 32768, 39936, 32704].toTensor(uint16) | ||
check: t.reverse_bits == expected | ||
|
||
main() | ||
GC_fullCollect() |