This repository contains code for our paper: The Impact of Demonstrations on Multilingual In-Context Learning: A Multidimensional Analysis. It allows for performing in-context learning with different types of demonstrations and templates on diverse models and tasks.
Models:
- XGLM
- LLama2
- Llama2-chat
- mT0
- BLOOMZ
- OpenAI APIs (via Microsoft Azure)
Multilingual tasks:
Create your docker image or virtual environment based on the provided docker file (Dockerfile). Specifically,
python: 3.8
torch: 1.14.0
CUDA: 11.8.0
configs/
: configuration files for each taskexperiments/
: reproduce results in the paper (See experiments/README.md for details.)openicl/
: modified version of OpenICLscripts/
: bash scripts that used by experimentsarguments.py
: all input argumentseval_openai.py
: evaluation pipeline for OpenAI modelseval_chat.py
: evaluation pipeline for Llama2-chateval_llm.py
: evaluation pipeline for other models, e.g., XGLMutils.py
: utility functions, e.g., data processing
- Thanks to the OpenICL codebase and Microsoft Azure.
Miaoran Zhang (mzhang@lsv.uni-saarland.de)