-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil_optimize.py
339 lines (316 loc) · 13.3 KB
/
util_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import sys
import pdb
import glob
import json
import time
import resource
import numpy as np
import pandas as pd
import tensorflow as tf
import util_tfrecords
class CallbackPrinting(tf.keras.callbacks.Callback):
def __init__(self, display_step=1, epochs=None, **kwargs):
super(CallbackPrinting, self).__init__(**kwargs)
self.display_step = display_step
self.epoch = 0
def on_epoch_begin(self, epoch, logs=None):
self.epoch = epoch
self.epoch_t0 = time.time()
def on_epoch_end(self, epoch, logs=None):
t_per_epoch = (time.time() - self.epoch_t0) / 60
print('### Completed epoch {} of {} in {:.1f} minutes'.format(
epoch,
self.params.get('epochs', None),
t_per_epoch))
for key in logs.keys():
if 'val_' in key:
display_str = '|__ epoch {:04d} __| {} : {:.4f} (train : {:.4f})'.format(
epoch, key, logs[key], logs[key.replace('val_', '')])
print(display_str, flush=True)
def on_train_batch_end(self, batch, logs=None):
if batch == 0:
self.epoch_t0 = time.time()
if batch % self.display_step == 0:
t_per_batch = (time.time() - self.epoch_t0) / (batch + 1)
display_str = 'step {:02d}_{:06d} | {:.4f} s/step | mem: {:06.3f} GB |'.format(
self.epoch,
batch,
t_per_batch,
resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024 / 1024)
for key in logs.keys():
display_key = key
display_key = display_key.replace('fc_top_label_', '')
display_key = display_key.replace('int_', '')
display_key = display_key.replace('multihot_', '')
display_key = display_key.replace('accuracy', 'acc')
display_key = display_key.replace('speaker', 'spkr')
display_key = display_key.replace('audioset', 'aset')
display_str += ' {}: {:.4f} |'.format(display_key, logs[key])
print(display_str, flush=True)
def get_loss(kwargs_loss={}, custom_loss=None):
"""
"""
loss = None
loss_name = kwargs_loss.get('name', 'SparseCategoricalCrossentropy')
kwargs_loss['name'] = loss_name
if ('Crossentropy' in loss_name) and ('from_logits' not in kwargs_loss):
kwargs_loss['from_logits'] = True
if loss_name == 'SparseCategoricalCrossentropy':
loss = tf.keras.losses.SparseCategoricalCrossentropy(**kwargs_loss)
elif loss_name == 'BinaryCrossentropy':
loss = tf.keras.losses.BinaryCrossentropy(**kwargs_loss)
elif loss_name == 'MeanAbsoluteError':
loss = tf.keras.losses.MeanAbsoluteError(**kwargs_loss)
elif loss_name == 'MeanSquaredError':
loss = tf.keras.losses.MeanSquaredError(**kwargs_loss)
elif 'CUSTOM' in loss_name.upper():
loss = custom_loss(**kwargs_loss)
else:
raise NotImplementedError("loss={} not recognized".format(loss_name))
return loss
def get_metrics(kwargs_loss={}, custom_metrics=None):
"""
"""
metrics = []
loss_name = kwargs_loss.get('name', 'SparseCategoricalCrossentropy')
if loss_name == 'SparseCategoricalCrossentropy':
metrics.append('accuracy')
elif loss_name == 'BinaryCrossentropy':
metrics.append('accuracy')
from_logits = kwargs_loss.get('from_logits', True)
metrics.append(tf.keras.metrics.AUC(multi_label=True, from_logits=from_logits, name='auc'))
elif (loss_name == 'MeanAbsoluteError') or (loss_name == 'MeanSquaredError'):
metrics.append(tf.keras.metrics.MeanAbsoluteError())
metrics.append(tf.keras.metrics.MeanSquaredError())
if custom_metrics is not None:
if isinstance(custom_metrics, list):
metrics.extend(custom_metrics)
else:
metrics.append(custom_metrics)
return metrics
def optimize(tfrecords_train=None,
tfrecords_valid=None,
dataset_train=None,
dataset_valid=None,
key_inputs='x',
key_outputs='y',
inputs=None,
model_io_function=None,
kwargs_dataset_from_tfrecords={},
kwargs_loss={},
kwargs_optimizer={},
custom_loss=None,
custom_metrics=None,
batch_size=64,
epochs=1000,
steps_per_epoch=5000,
validation_steps=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
monitor_metric='val_accuracy',
monitor_mode='max',
early_stopping_min_delta=0,
early_stopping_patience=None,
early_stopping_baseline=None,
kwargs_tensorboard={},
dir_model='saved_models/TEST',
basename_log='log_optimize.csv',
basename_ckpt_best='ckpt_BEST',
basename_ckpt_epoch='ckpt_{epoch:04d}',
display_step=10):
"""
"""
# SETUP INPUT PIPELINE(S)
if tfrecords_train is not None:
if not isinstance(tfrecords_train, list):
tfrecords_train = glob.glob(tfrecords_train)
dataset_train = util_tfrecords.get_dataset_from_tfrecords(
tfrecords_train,
eval_mode=False,
batch_size=batch_size,
**kwargs_dataset_from_tfrecords)
if tfrecords_valid is not None:
if not isinstance(tfrecords_valid, list):
tfrecords_valid = glob.glob(tfrecords_valid)
dataset_valid = util_tfrecords.get_dataset_from_tfrecords(
tfrecords_valid,
eval_mode=True,
batch_size=batch_size,
**kwargs_dataset_from_tfrecords)
if dataset_valid is None:
monitor_metric = monitor_metric.replace('val_', '')
if inputs is None:
# If inputs tensor is not provided, dataset requires formatting for model.fit
def get_dataset_inputs_and_targets(example):
"""
This function ensures dataset returns a tuple of (inputs, targets),
as required by the tf.keras.Model.fit method when using tf.data.
"""
inputs = example[key_inputs]
if isinstance(key_outputs, list):
targets = {key_output: example[key_output] for key_output in key_outputs}
else:
targets = example[key_outputs]
return inputs, targets
dataset_train = dataset_train.map(get_dataset_inputs_and_targets)
if dataset_valid is not None:
dataset_valid = dataset_valid.map(get_dataset_inputs_and_targets)
# SETUP MODEL
if inputs is None:
# If inputs tensor is not provided, get one from formatted dataset
example = iter(dataset_train).get_next()[0][0]
inputs = tf.keras.Input(shape=example.shape, batch_size=None, dtype=example.dtype)
model = tf.keras.Model(inputs=inputs, outputs=model_io_function(inputs))
# SETUP LOSS FUNCTION AND METRICS
if isinstance(key_outputs, list):
loss_weights = {}
loss = {}
metrics = {}
for key_output in key_outputs:
loss_weights[key_output] = kwargs_loss[key_output].pop('weight', None)
loss[key_output] = get_loss(
kwargs_loss=kwargs_loss[key_output],
custom_loss=custom_loss)
metrics[key_output] = get_metrics(
kwargs_loss=kwargs_loss[key_output],
custom_metrics=custom_metrics)
else:
loss_weights = kwargs_loss.pop('weight', None)
loss = get_loss(kwargs_loss=kwargs_loss, custom_loss=custom_loss)
metrics = get_metrics(kwargs_loss=kwargs_loss, custom_metrics=custom_metrics)
# SETUP OPTIMIZER AND COMPILE MODEL
optimizer_name = kwargs_optimizer.get('name', 'Adam')
if 'name' not in kwargs_optimizer:
kwargs_optimizer['name'] = optimizer_name
if optimizer_name == 'Adam':
optimizer = tf.keras.optimizers.legacy.Adam(**kwargs_optimizer)
else:
raise NotImplementedError("optimizer={} not recognized".format(optimizer_name))
model.compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=metrics,
steps_per_execution=None,
run_eagerly=None)
# SETUP CALLBACKS AND RESUME EXISTING OPTIMIZATION
callbacks = [CallbackPrinting(display_step=display_step)]
# Optimization log
filename_csv_log = os.path.join(dir_model, basename_log)
callback_csv_log = tf.keras.callbacks.CSVLogger(
filename=filename_csv_log,
separator=',',
append=True)
callbacks.append(callback_csv_log)
# Early stopping
if early_stopping_patience is None:
early_stopping_patience = epochs
callback_early_stopping = tf.keras.callbacks.EarlyStopping(
monitor=monitor_metric,
min_delta=early_stopping_min_delta,
patience=early_stopping_patience,
verbose=1,
mode=monitor_mode,
baseline=early_stopping_baseline,
restore_best_weights=False)
callbacks.append(callback_early_stopping)
# Model checkpointer (best weights only)
filepath_ckpt_best = os.path.join(dir_model, basename_ckpt_best)
callback_ckpt_best = tf.keras.callbacks.ModelCheckpoint(
filepath=filepath_ckpt_best,
monitor=monitor_metric,
verbose=1,
save_best_only=True,
save_weights_only=True,
mode=monitor_mode,
save_freq='epoch',
options=None)
callbacks.append(callback_ckpt_best)
# Model checkpointer (every epoch)
if basename_ckpt_epoch is not None:
filepath_ckpt_epoch = os.path.join(dir_model, basename_ckpt_epoch)
callback_ckpt_epoch = tf.keras.callbacks.ModelCheckpoint(
filepath=filepath_ckpt_epoch,
monitor=monitor_metric,
verbose=1,
save_best_only=False,
save_weights_only=True,
mode=monitor_mode,
save_freq='epoch',
options=None)
callbacks.append(callback_ckpt_epoch)
else:
filepath_ckpt_epoch = None
# Tensorboard
if kwargs_tensorboard:
callback_tensorboard = tf.keras.callbacks.TensorBoard(
log_dir=os.path.join(dir_model, 'logs'),
**kwargs_tensorboard)
callbacks.append(callback_tensorboard)
# Determine initial epoch and best metric from optimization log
initial_epoch = 0
if os.path.exists(filename_csv_log) and os.path.getsize(filename_csv_log) > 0:
df_log = pd.read_csv(filename_csv_log)
initial_epoch = int(df_log['epoch'].max() + 1)
if monitor_metric in df_log:
if callback_ckpt_best.best == -np.inf:
callback_ckpt_best.best = df_log[monitor_metric].max()
else:
callback_ckpt_best.best = df_log[monitor_metric].min()
print("#### Resume training log: {}".format(filename_csv_log))
print("# initial_epoch: {}".format(initial_epoch))
print("# {}: {}".format(monitor_metric, callback_ckpt_best.best))
if initial_epoch >= epochs:
print("#### Previously completed: {} of {} epochs".format(initial_epoch, epochs))
return None
# Load most recent epoch checkpoint (if available) or best checkpoint
if filepath_ckpt_epoch is not None:
filepath_ckpt_epoch_init = filepath_ckpt_epoch.format(epoch=initial_epoch)
if (initial_epoch == 0) and (len(glob.glob(filepath_ckpt_epoch_init + '*')) == 0):
print("#### Writing initialization: {}".format(filepath_ckpt_epoch_init))
model.save_weights(filepath_ckpt_epoch_init)
if len(glob.glob(filepath_ckpt_epoch_init + '*')) > 0:
print("#### Loading initial ckpt: {}".format(filepath_ckpt_epoch_init))
model.load_weights(filepath_ckpt_epoch_init).expect_partial()
else:
assert len(glob.glob(filepath_ckpt_best + '*')) > 0, "no valid checkpoint found"
print("#### Loading best ckpt: {}".format(filepath_ckpt_best))
model.load_weights(filepath_ckpt_best).expect_partial()
else:
if len(glob.glob(filepath_ckpt_best + '*')) > 0:
print("#### Loading best ckpt: {}".format(filepath_ckpt_best))
model.load_weights(filepath_ckpt_best).expect_partial()
print("#### MODEL LAYERS")
for layer in model.layers:
if tf.is_tensor(layer.input) and tf.is_tensor(layer.output):
print('|__ {}: {} {} --> {} {} ({})'.format(
layer.name,
layer.input.shape,
layer.input.dtype.name,
layer.output.shape,
layer.output.dtype.name,
layer.dtype_policy))
# RUN OPTIMIZATION
history = model.fit(
x=dataset_train,
batch_size=None,
epochs=epochs,
verbose=0,
callbacks=callbacks,
validation_split=0.0,
validation_data=dataset_valid,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
validation_batch_size=None,
validation_freq=1,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing)
return history