Skip to content

msolo/pyzy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Zygote

A warm Python interpreter process that can quickly fork off a new worker makes complex programs that are run frequently much less resource intense to start up. It also reduces the RAM required to run multiple copies of the same program.

This example is fairly conservative, since it demonstrates the least amount of benefit - that of basically caching the system library. Most applications load a lot more code not included in the system library, so the savings is generally greater.

time python3.6 -ESs demo/demo3.py 
OK

real	0m0.032s
user	0m0.016s
sys	0m0.011s
time PYZY_PYTHON=/usr/local/bin/python3.6 ./pyzy demo/demo3.py 
OK

real	0m0.015s
user	0m0.002s
sys	0m0.004s

Building pyzy

make

Debugging the Server

Starting a server by hand lets you see more errors.

python pyzy_server.py

Exec A Script

pyzy my_script_file.py

Controlling pyzy

There are few environment variables that are useful for tuning behavior.

  • PYZY_MAX_IDLE_SECS=600
    • The maximum number of seconds a pyzy process stays idle before exiting.
  • PYZY_CACHE_SCRIPT=1
    • Try to load all the code from the script into the main zygote process. The can be a bit messy with multiple conflicting imports. It's best combined with a dedicated server per-script which is done by using a custom PYZY_SOCKET.
  • PYZY_SOCKET=/tmp/pyzy-$LOGNAME
    • Use a custom socket to find the pyzy server process.
  • PYZY_PYTHON=/usr/bin/python
    • Use the proper python interpreter.

A lot of times you need a tiny wrapper script to wire this all up.

#!/usr/bin/env PYZY_PYTHON=/usr/bin/python3.6 PYZY_MAX_IDLE_SECS=1800 PYZY_CACHE_SCRIPT=1 PYZY_SOCKET=/tmp/pyzy-myscript /path/myscript.py

Caveats

There is a certain amount of magic here that has some side effects. For instance, imports will only happen once for the lifetime of the server. If code changes, the server needs to be killed manually. Some modules react in odd ways to single initialization. For instance, all child processes may share the same seed for the random module.

Peculiarities

Python on OS X is pretty slow to startup. For instance running the simplest script takes 18ms on a MacBookPro6,2 running OS X 10.10, which is half as fast a running it under virtualized Linux. (Let that sink in a moment.)

$ time /usr/local/bin/python2.7 -ESsc 'print "OK"'
OK

real	0m0.018s
user	0m0.007s
sys	0m0.007s

On the same physical hardware, running the same test on Ubuntu 16.04 under VMWare Fusion 6, the results are twice as fast.

$ time /usr/bin/python -ESsc 'print "OK"'
OK

real	0m0.009s
user	0m0.004s
sys	0m0.000s

I suspect there is some amount of overhead to fork() on OS X. My dtruss skills are a bit weak, so I haven't yet investigated further.

How It Works

Server:

  • Start up an interpreter
  • Load most reasonable modules
  • Listen on Unix domain socket
  • accept connection
  • fork a new child
  • do child-specific initialization
  • accept filename and arg list
  • do file descriptor passing for stdin/stdout/stderr
  • run to completion
  • serialize return code

Client:

  • check for unix domain socket, if it doesn't exist start the server as described above.
  • connect to unix domain socket
  • serialize filename and arg list
  • send filename, serialized arg list and fd 0,1,2
  • wait for return code

About

A fast Python zygote process

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published