Unofficial Implementation of paper Learning a Unified Classifier Incrementally via Rebalancing paper
python3 -m venv lucir-env
source lucir-env/bin/activate
pip install requirements.txt
python main.py --args
--dataset
Dataset [CIFAR100, IMAGENET]
--start
Number of classes of first task
--increment
Number of classes at each next task
--rehearsal
Number of example stored per each class
--selection
Selection of exemplar [Herding, Random, Closest to Mean]
--exR
if True, Exemplar are stored
--class_balance_finetuning
if True, a class balance fine-tuning is performed at the end of each task
--less_forg
if True, less-forget constraint is used
--lambda_base
weight factor of less-forget loss
--ranking
if True, margin ranking loss constraint is used
Starting Classes | Increment | Average Incremental Accuracy | |
50 | 50 | 69.81 | Here |
50 | 25 | 66.76 | Here |
50 | 10 | 63.42 | Here |
50 | 5 | 60.18 | Here |