An open-world scenario domain generalization code base
You can download the .zip file for all code directly from here. Anonymous links are for the convenience of double-blind review and will not be LTS.
# create virtual environment and install packages
conda env create -f environment.yaml
# activate virtual environment
conda activate cae
# install tllib
python setup.py install
We offered anonymous links PACS, Terra for review.
you should put *.zip files in ./data and unzip.
└─data
├─domainnet
├─office-home
├─PACS
├─Terra
└─VLCS
# exp on all the datasets
sh [DG_method].sh
# for example
sh cae.sh
# SFDG experiments
python cae.py [data_path] -d [dataset] -t [target domain] -a [backbone_of_CLIP] --seed [seed] --log [log_path]
# for example
python cae.py data/PACS -d PACS -t S -a vitb16 --seed 0 --log logs/cae/PACS_S
We collected two extra domains ('X' for pixel_style and 'G' for geometric) for PACS dataset to test open-world performance of our method.
# SFDG
python cae.py data/PACS -d PACS -t X -a vitb16 --seed 0 --log logs/cae/PACS_X
# DG
python erm.py data/PACS -d PACS -s P A C -t G -a resnet50 --seed 0 --log logs/erm/PACS_G
# DG experiments
python [DG_method].py [data_path] -d [dataset] -s [source domains] -t [target domain] -a [backbone_of_CLIP] --seed [seed] --log [log_path]
# for example
python erm.py data/PACS -d PACS -s P A C -t S -a resnet50 --seed 0 --log logs/cae/PACS_S --freeze-bn
TLlib is a public toolbox for transfer learning, we modified these files for experiments on Terra and VLCS datasets.
./tllib/vision/datasets/terra.py
./tllib/vision/datasets/vlcs.py
./tllib/vision/datasets/__init__.py