forked from GustavZ/realtime_object_detection: https://github.com/GustavZ/realtime_object_detection
And focused on model split technique of ssd_mobilenet_v1.
Download model from here: tf1_detection_model_zoo
wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
and here: TensorFlow DeepLab Model Zoo
wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
Model | model_type | split_shape |
---|---|---|
ssd_mobilenet_v1_coco_11_06_2017 | nms_v0 | 1917 |
ssd_mobilenet_v1_coco_2017_11_17 | nms_v1 | 1917 |
ssd_inception_v2_coco_2017_11_17 | nms_v1 | 1917 |
ssd_mobilenet_v1_coco_2018_01_28 | nms_v2 | 1917 |
ssdlite_mobilenet_v2_coco_2018_05_09 | nms_v2 | 1917 |
ssd_inception_v2_coco_2018_01_28 | nms_v2 | 1917 |
ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_03 | nms_v2 | 1917 |
ssd_mobilenet_v1_0.75_depth_quantized_300x300_coco14_sync_2018_07_03 | nms_v2 | 1917 |
ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03 | nms_v2 | 51150 |
ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03 | nms_v2 | 51150 |
ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync_2018_07_03 | nms_v2 | 3000 |
faster_rcnn_inception_v2_coco_2018_01_28 | faster_v2 | |
faster_rcnn_resnet50_coco_2018_01_28 | faster_v2 | |
faster_rcnn_resnet101_coco_2018_01_28 | faster_v2 | |
faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28 | faster_v2 | |
mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28 | mask_v1 | |
mask_rcnn_inception_v2_coco_2018_01_28 | mask_v1 | |
mask_rcnn_resnet101_atrous_coco_2018_01_28 | mask_v1 | |
mask_rcnn_resnet50_atrous_coco_2018_01_28 | mask_v1 | |
deeplabv3_mnv2_pascal_train_aug_2018_01_29 | deeplab_v3 | |
deeplabv3_mnv2_pascal_trainval_2018_01_29 | deeplab_v3 | |
deeplabv3_pascal_train_aug_2018_01_04 | deeplab_v3 | |
deeplabv3_pascal_trainval_2018_01_04 | deeplab_v3 |
-
TensorRT ->
model_type: 'trt_v1'
Requirements: https://github.com/NVIDIA-Jetson/tf_trt_models -
Faster R-CNN: PC/Xavier only
faster_rcnn_nas_coco_2018_01_28 occurred Out Of Memory on my PC.
Other Faster R-CNN has not checked yet. -
Mask R-CNN: PC/Xavier only
Removed split_model.
Add worker_threads for parallel detection. A little bit fast, maybe. -
DeepLab V3: PC/Xavier only
See also:
- tensorflow/models#3270
- https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/
- login Jetson TX2. Desktop login or ssh remote login.
ssh -C -Y ubuntu@xxx.xxx.xxx.xxx
- copy .config.yml to config.yml
cp .config.yml config.yml
- edit
config.yml
for your environment. (Ex. camera_input: 0 # for PC) - run
python run_stream.py
realtime object detection from webcam - or run
python run_video.py
realtime object detection from movie file - or run
python run_image.py
realtime object detection from image file - wait a few minutes.
- Multi-Threading is better performance than Multi-Processing. Multi-Processing bottleneck is interprocess communication.
pip install --upgrade pyyaml
Also, OpenCV >= 3.1 and Tensorflow >= 1.4 (1.6 is good)
with run_image.py
Please create 'images' directory and put image files.(jpeg,jpg,png)
Subdirectories can also be used.
image_input: 'images' # input image dir
with run_video.py
movie_input: 'input.mp4' # mp4 or avi. Movie file.
with run_stream.py
This is OpenCV argument.
- USB Webcam on PC/Xavier
camera_input: 0
- USB Webcam on TX2
camera_input: 1
- Onboard camera on Xavier (with TX2 onboard camera)
camera_input: "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1280, height=720,format=NV12, framerate=120/1 ! nvvidconv ! video/x-raw,format=I420 ! videoflip method=rotate-180 ! appsink"
- Onboard camera on TX2
camera_input: "nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)1280, height=(int)720,format=(string)I420, framerate=(fraction)30/1 ! nvvidconv flip-method=0 ! video/x-raw, format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink"
- Movie (run_stream.py or run_video.py)
Save detection frame to movie file. (./output_movie/output_unixtime.avi)
Requires a lot of disk space. - Image (run_image.py)
Save detection image to image file. (./output_image/PATH_TO_FILE/filename.jpg)
Normally, this output image file is the same width x height and format as input images.
But if run with MASK R-CNN, output file size is resized bywidth
andheight
.
save_to_file: True
I do not know why, but in TX2 force_gpu_compatible: True it will be faster.
- on TX2
force_gpu_compatible: True
visualize: False
- on PC
force_gpu_compatible: False
visualize: False
Visualization is heavy. Visualization FPS possible to limit.
Display FPS: Detection FPS.
- default is with Single-Processing and show every frames.
visualize: True
vis_worker: False
max_vis_fps: 0
vis_text: True
- Visualization FPS limit with Single-Processing
visualize: True
vis_worker: False
max_vis_fps: 30
vis_text: True
- Visualization FPS limit with Multi-Processing
This is good to use withsave_to_file: True
.
visualize: True
vis_worker: True
max_vis_fps: 30
vis_text: True
- Model type
model_type: 'nms_v2'
The difference between 'nms_v1' and 'nms_v2' is BatchMultiClassNonMaxSuppression inputs.
model_type: trt_v1
is somewhat special. See config.yml.
# ssd_mobilenet_v1_coco_2018_01_28
model_type: 'nms_v2'
model_path: 'models/ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb'
label_path: 'models/labels/mscoco_label_map.pbtxt'
num_classes: 90
- Splite shape
split_shape: 1917
ExpandDims_1's shape. Ex:
learned size | split_shape |
---|---|
300x300 | 1917 |
400x400 | 3309 |
500x500 | 5118 |
600x600 | 7326 |
See also: Learn Split Model
- TensorRT split/non-split both support. Need Tensorflow with TensorRT support. (r1.9 has bug. I use r1.8/r1.10.1 for pc)
model_type: 'trt_v1'
precision_model: 'FP32' # 'FP32', 'FP16', 'INT8'
model: 'ssd_inception_v2_coco_2018_01_28'
label_path: 'models/labels/mscoco_label_map.pbtxt'
num_classes: 90
FPS:25.8 Frames:130 Seconds: 5.04248 | 1FRAME total: 0.11910 cap: 0.00013 gpu: 0.03837 cpu: 0.02768 lost: 0.05293 send: 0.03834 | VFPS:25.4 VFrames:128 VDrops: 1
FPS: detection fps. average fps of fps_interval (5sec).
Frames: detection frames in fps_interval.
Seconds: fps_interval running time.
1FRAME
total: 1 frame's processing time. 0.1 means delay and 10 fps if it is single-threading(split_model: False
). In multi-threading(split_model: True
), this value means delay.
cap: time of capture camera image and transform for model input.
gpu: sess.run() time of gpu part.
cpu: sess.run() time of cpu part.
lost: time of overhead, something sleep etc.
send: time of multi-processing queue, block and pipe time.
VFPS: visualization fps.
VFrames: visualization frames in fps_interval.
VDrops: When multi-processing visualization is bottleneck, drops.
-
Support Xavier onboard camera. (with TX2 onboard camera)
-
Add parallel detection for Mask R-CNN.
-
Remove split from Mask R-CNN.
-
Support DeepLab V3 models.
model_type: deeplab_v3
-
Add image input.
-
Rename config.yml parameter name from save_to_movie to save_to_file.
-
support Faster R-CNN models.
-
Add
max_frame: 0
for no exit withvisualize: False
. -
support ssd_mobilenet_v1 11 Jun, 2017 model.
-
Add from movie.
-
Add save_to_movie.
-
BETA: Support MASK R-CNN models.
-
Always split GPU/CPU device.
-
Support SSD 2018_07_03 models.
-
Support TensorRT Optimization. : Need TensorRT, Tensorflow with TensorRT.
-
Support ssd_mobilenet_v2, ssdlite_mobilenet_v2 and ssd_inception_v2_coco. : Download model from here: detection_model_zoo
-
Add Multi-Processing visualization. : Detection and visualization are asynchronous.
-
Drop unused files.
-
Add force_gpu_compatible option. : ssd_mobilenet_v1_coco 34.5 FPS without vizualization 1280x720 on TX2.
-
Multi-Processing version corresponds to python 3.6 and python 2.7.
-
Launch speed up. : Improve startup time from 90sec to 78sec.
-
Add time details. : To understand the processing time well.
-
Separate split and non-split code. : Remove unused session from split code.
-
Remove Session from load frozen graph. : Reduction of memory usage.
-
Flexible sleep_interval. : Maybe speed up on high performance PC.
-
FPS separate to multi-processing. : Speed up.
-
FPS streaming calculation. : Flat fps.
-
FPS is average of fps_interval. : Flat fps.
-
FPS updates every 0.2 sec. : Flat fps.
-
solve: Multiple session cannot launch problem. tensorflow.python.framework.errors_impl.InternalError: Failed to create session.
- PC
- CPU: i7-8700 3.20GHz 6-core 12-threads
- GPU: NVIDIA GTX1060 6GB
- MEMORY: 32GB
- Ubuntu 16.04
- docker-ce
- nvidia-docker
- nvidia/cuda
- Pyton 2.7.12/OpenCV 3.4.1/Tensorflow 1.6.1
- Pyton 3.6.5/OpenCV 3.4.1/Tensorflow 1.6.1
- Jetson Xavier
- JetPack 4.0 Developer Preview
- Python 2.7/OpenCV 3.3.1/Tensorflow 1.6.1
- Python 2.7/OpenCV 3.3.1/Tensorflow 1.10.1 (slow)
- JetPack 4.1.1 Developer Preview
- Python 3.6.7/OpenCV 3.4.1/Tensorflow 1.10.1 (seems fast. I changed opencv build options.)
- JetPack 4.0 Developer Preview
- Jetson TX2
- JetPack 3.2/3.2.1
- Python 3.6
- OpenCV 3.4.1/Tensorflow 1.6.0
- OpenCV 3.4.1/Tensorflow 1.6.1
- OpenCV 3.4.1/Tensorflow 1.7.0 (slow)
- OpenCV 3.4.1/Tensorflow 1.7.1 (slow)
- OpenCV 3.4.1/Tensorflow 1.8.0 (slow)
- JetPack 3.1
- Python 3.6
- OpenCV 3.3.1/Tensorflow 1.4.1
- OpenCV 3.4.0/Tensorflow 1.5.0
- OpenCV 3.4.1/Tensorflow 1.6.0
- OpenCV 3.4.1/Tensorflow 1.6.1 (Main)
- JetPack 3.2/3.2.1
- Jetson TX1
- SSD Storage
- JetPack 3.2
- Python 3.6
- OpenCV 3.4.1/Tensorflow 1.6.0
Mode | Mode Name | Denver 2 | Frequency | ARM A57 | Frequency | GPU Frequency |
---|---|---|---|---|---|---|
0 | Max-N | 2 | 2.0 GHz | 4 | 2.0 GHz | 1.30 GHz |
1 | Max-Q | 0 | 4 | 1.2 GHz | 0.85 GHz | |
2 | Max-P Core-All | 2 | 1.4 GHz | 4 | 1.4 GHz | 1.12 GHz |
3 | Max-P ARM | 0 | 4 | 2.0 GHz | 1.12 GHz | |
4 | Max-P Denver | 2 | 2.0 GHz | 0 | 1.12 GHz |
Max-N
sudo nvpmodel -m 0
sudo ./jetson_clocks.sh
Max-P ARM(Default)
sudo nvpmodel -m 3
sudo ./jetson_clocks.sh
Show current mode
sudo nvpmodel -q --verbose
FPS | Machine | Size | Split Model | Visualize | Mode | CPU | Watt | Ampere | Volt-Ampere | Model | classes |
---|---|---|---|---|---|---|---|---|---|---|---|
227 | PC | 160x120 | True | False | - | 27-33% | 182W | 1.82A | 183VA | frozen_inference_graph.pb | 90 |
223 | PC | 160x120 | True | True, Worker 30 FPS Limit | - | 28-36% | 178W | 1.77A | 180VA | frozen_inference_graph.pb | 90 |
213 | PC | 544x288 | True | False | - | 49-52% | 178W | 1.79A | 180VA | frozen_inference_graph.pb | 90 |
212 | PC | 160x120 | True | True | - | 30-34% | 179W | 1.82A | 183VA | frozen_inference_graph.pb | 90 |
207 | PC | 544x288 | True | True, Worker 30 FPS Limit | - | 48-53% | 178W | 1.76A | 178VA | frozen_inference_graph.pb | 90 |
190 | PC | 544x288 | True | True | - | 52-58% | 176W | 1.80A | 177VA | frozen_inference_graph.pb | 90 |
174 | PC | 1280x720 | True | False | - | 42-49% | 172W | 1.72A | 174VA | frozen_inference_graph.pb | 90 |
163 | PC | 1280x720 | True | True, Worker 30 FPS Limit | - | 47-53% | 170W | 1.69A | 170VA | frozen_inference_graph.pb | 90 |
153 | PC | 1280x720 | True | True, Worker 60 FPS Limit | - | 51-56% | 174W | 1.73A | 173VA | frozen_inference_graph.pb | 90 |
146 | PC | 1280x720 | True | True, Worker No Limit (VFPS:67) | - | 57-61% | 173W | 1.70A | 174VA | frozen_inference_graph.pb | 90 |
77 | PC | 1280x720 | True | True | - | 29-35% | 142W | 1.43A | 144VA | frozen_inference_graph.pb | 90 |
60 | Xavier | 160x120 | True | False | Max-N | 34-42% | 31.7W | 0.53A | 54.5VA | frozen_inference_graph.pb | 90 |
59 | Xavier | 544x288 | True | False | Max-N | 39-45% | 31.8W | 0.53A | 54.4VA | frozen_inference_graph.pb | 90 |
58 | Xavier | 1280x720 | True | False | Max-N | 38-48% | 31.6W | 0.53A | 55.1VA | frozen_inference_graph.pb | 90 |
54 | Xavier | 160x120 | True | True | Max-N | 39-44% | 31.4W | 0.52A | 54.4VA | frozen_inference_graph.pb | 90 |
52 | Xavier | 544x288 | True | True | Max-N | 39-50% | 31.4W | 0.55A | 56.0VA | frozen_inference_graph.pb | 90 |
48 | Xavier | 1280x720 | True | True | Max-N | 44-76% | 32.5W | 0.54A | 55.6VA | frozen_inference_graph.pb | 90 |
43 | TX2 | 160x120 | True | False | Max-N | 65-76% | 18.6W | 0.28A | 29.9VA | frozen_inference_graph.pb | 90 |
40 | TX2 | 544x288 | True | False | Max-N | 60-77% | 18.0W | 0.28A | 29.8VA | frozen_inference_graph.pb | 90 |
38 | TX2 | 1280x720 | True | False | Max-N | 62-75% | 17.7W | 0.27A | 29.2VA | frozen_inference_graph.pb | 90 |
37 | TX2 | 160x120 | True | True | Max-N | 5-68% | 17.7W | 0.27A | 28.0VA | frozen_inference_graph.pb | 90 |
37 | TX2 | 160x120 | True | False | Max-P ARM | 80-86% | 13.8W | 0.22A | 23.0VA | frozen_inference_graph.pb | 90 |
37 | TX2 | 160x120 | True | True | Max-P ARM | 77-80% | 14.0W | 0.22A | 23.1VA | frozen_inference_graph.pb | 90 |
35 | TX2 | 544x288 | True | True | Max-N | 20-71% | 17.0W | 0.27A | 27.7VA | frozen_inference_graph.pb | 90 |
35 | TX2 | 544x288 | True | False | Max-P ARM | 82-86% | 13.6W | 0.22A | 22.8VA | frozen_inference_graph.pb | 90 |
34 | TX2 | 1280x720 | True | False | Max-P ARM | 82-87% | 13.6W | 0.21A | 22.2VA | frozen_inference_graph.pb | 90 |
32 | TX2 | 544x288 | True | True | Max-P ARM | 79-85% | 13.4W | 0.21A | 22.3VA | frozen_inference_graph.pb | 90 |
31 | TX2 | 1280x720 | True | True | Max-N | 46-75% | 16.9W | 0.26A | 28.1VA | frozen_inference_graph.pb | 90 |
27 | TX1 | 160x120 | True | False | - | 71-80% | 17.3W | 0.27A | 28.2VA | frozen_inference_graph.pb | 90 |
26 | TX2 | 1280x720 | True | True | Max-P ARM | 78-86% | 12.6W | 0.20A | 21.2VA | frozen_inference_graph.pb | 90 |
26 | TX1 | 544x288 | True | False | - | 74-82% | 17.2W | 0.27A | 29.0VA | frozen_inference_graph.pb | 90 |
26 | TX1 | 160x120 | True | True | - | 69-81% | 17.1W | 0.27A | 28.7VA | frozen_inference_graph.pb | 90 |
24 | TX1 | 1280x720 | True | False | - | 73-80% | 17.6W | 0.27A | 29.3VA6 | frozen_inference_graph.pb | 90 |
23 | TX1 | 544x288 | True | True | - | 77-82% | 16.7W | 0.27A | 28.2VA | frozen_inference_graph.pb | 90 |
19 | TX1 | 1280x720 | True | True | - | 78-86% | 15.8W | 0.26A | 26.7VA | frozen_inference_graph.pb | 90 |
on Xavier 544x288:
on PC 544x288:
on TX2 544x288:
Movie's FPS is little bit slow down. Because run ssd_movilenet_v1 with desktop capture.
Capture command:
gst-launch-1.0 -v ximagesrc use-damage=0 ! nvvidconv ! 'video/x-raw(memory:NVMM),alignment=(string)au,format=(string)I420,framerate=(fraction)25/1,pixel-aspect-ratio=(fraction)1/1' ! omxh264enc ! 'video/x-h264,stream-format=(string)byte-stream' ! h264parse ! avimux ! filesink location=capture.avi
https://github.com/naisy/train_ssd_mobilenet