-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
1 parent
ad583f6
commit 76d3398
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
from torch.utils.data import DataLoader | ||
import pandas as pd | ||
import os | ||
import time | ||
import numpy as np | ||
|
||
class KaggleDataLoader: | ||
""" | ||
Class for loading data in batches after it has been processed | ||
""" | ||
def __init__(self, path_to_data): | ||
pass | ||
|
||
|
||
class DataProcessor: | ||
""" | ||
Class for standardising and processing data from raw form | ||
""" | ||
def __init__(self, docs): | ||
pass | ||
|
||
def preprocess(self): | ||
""" This is pretokenisation cleaning""" | ||
pass | ||
|
||
def process(self): | ||
""" This is usually the tokeniser""" | ||
pass | ||
|
||
def postprocess(self): | ||
""" This is post tokenisation cleaning""" | ||
pass | ||
|
||
def generate_class_to_ent_map(unique_classes): | ||
# sort classes | ||
pass | ||
|
||
def df_from_text_files(path_to_dir): | ||
filenames = [filename for filename in os.listdir(path_to_dir)] | ||
records = [(filename.rstrip('.txt'), open(os.path.join(path_to_dir, filename), 'r').read()) for filename in filenames] | ||
df = pd.DataFrame.from_records(records, columns=['id', 'text']) | ||
return df | ||
|
||
def create_labels_doc_level(path_to_text_dir, path_to_ground_truth): | ||
s = time.time() | ||
df_ground_truth = pd.read_csv(path_to_ground_truth) | ||
unique_labels = list(df_ground_truth.discourse_type.unique()) | ||
unique_labels = [f'{start_letter}-{label}' for label in unique_labels for start_letter in ['B', 'I']] | ||
label_to_id_map = { | ||
label: i for i, label in enumerate( | ||
['O'] + unique_labels | ||
) | ||
} | ||
|
||
df_ground_truth.predictionstring = df_ground_truth.predictionstring.str.split() | ||
df_ground_truth['label_ids'] = df_ground_truth.predictionstring.apply(lambda x: [int(x[0]), int(x[-1])]) | ||
df_ground_truth['labels'] = df_ground_truth[['discourse_type', 'label_ids']].apply( | ||
lambda x: [f'B-{x.discourse_type}'] + [f'I-{x.discourse_type}']*(x.label_ids[-1] - x.label_ids[0]), | ||
axis=1 | ||
) | ||
df_ground_truth['range'] = df_ground_truth.label_ids.apply(lambda x: np.arange(x[0], x[1]+1)) | ||
df_ground_truth['labels'] = df_ground_truth.labels.apply(lambda x: [label_to_id_map[label] for label in x]) | ||
|
||
# this is kind of wrong? | ||
|
||
df_texts = df_from_text_files(path_to_text_dir) | ||
"""df_texts.text = df_texts.text.str.replace('\n', ' ') | ||
df_texts.text = df_texts.text.str.replace('\s+', ' ') | ||
df_texts.text = df_texts.text.str.replace('(?<=\w) (?=[.,\/#!$%\^&\*;:{}=\-_`~()])', '')""" | ||
df_texts.text = df_texts.text.str.strip() | ||
df_texts['text_split'] = df_texts.text.str.split() | ||
df_texts['labels'] = df_texts.text_split.apply(lambda x: len(x)*[label_to_id_map['O']]) | ||
df_texts = df_texts.merge( | ||
df_ground_truth.groupby('id').agg({ | ||
'range': lambda x: np.concatenate(list(x)), | ||
'labels': lambda x: np.concatenate(list(x)) | ||
}).rename(columns={'labels':'labels_temp'}), | ||
on='id' | ||
) | ||
def update_inplace(x): | ||
ids = x.range | ||
new_labels = x.labels_temp | ||
labels = np.array(x.labels, dtype=new_labels.dtype) | ||
assert len(ids) == len(new_labels) | ||
labels[ids] = new_labels | ||
return list(labels) | ||
|
||
|
||
df_texts.labels = df_texts.apply(lambda x: update_inplace(x), axis=1) | ||
|
||
|
||
"""ids = np.stack(df_texts.range) | ||
print(ids.shape) | ||
labels = np.stack(df_texts.labels) | ||
print(labels.shape) | ||
new_labels = np.stack(df_texts.labels) | ||
print(new_labels.shape) | ||
labels[ids] = new_labels | ||
df_texts.labels = labels""" | ||
|
||
print(time.time() - s) | ||
print(df_texts.labels[df_texts.id == '0A0AA9C21C5D']) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
PATH = '../../../data/kaggle/feedback-prize-2021/train' | ||
FILE_PATH = '../../../data/kaggle/feedback-prize-2021/train.csv' | ||
|
||
create_labels_doc_level(PATH, FILE_PATH) |