Skip to content

nemonameless/weights_st2dy

 
 

Repository files navigation

weights_st2dy

说明

本项目为辅助获得静态图和动态图权重名对应关系并基于此对应关系转换权重,流程如下:

  1. 静态图一层层顺序创建,故在create_parameter时打印权重名和shape (static_print.py)
  2. 动态图create_parameter__init__里,网络计算在forward里,顺序不一定一致,故在forward里打印权重名和shape (dygraph_print.py)
  3. 从前到后依次匹配静态图和动态图的权重名,须shape能匹配上,若shape匹配不上,会自动搜索后续shape能匹配上的动态图权重名,选出候选权重名供用户手动选择 (parse.py)
  4. 匹配完静态图和动态图权重名对应关系存储在weight_name_map.txt中,通过convert.py将静态图权重转换为动态图权重 (convert.py)

注意: 权重匹配过程中已自动将Conv-BN和FC的weight-bias融合匹配

可以尝试如下两条命令体验匹配过程:

YOLOv3

python parse.py yolov3_dy_print.txt yolov3_st_print.txt

MaskRCNN

python parse.py mask_fpn_dy_print.txt mask_fpn_st_print.txt

用法

  1. layers.py 替换paddle包中 paddle/fluid/dygraph/layers.py, layer_helper_base.py 替换paddle包中 paddle/fluid/layer_helper_base.py, 可以通过pip install/uninstall获取paddle包安装路径,替换过程建议用vimdiff把增量代码替换过去。

  2. 准备PaddleDetection静态图和动态图的代码库, static_print.py 移动至静态图库中,dynamic_print.py 移动至动态图库中, 运行对应配置文件并将输出保存为文件,如:

# 静态图库中
python static_print.py -c configs/yolov3_darknet.yml 2>&1 | tee yolov3_st_print.txt
# 动态图库中
python dygraph_print.py -c configs/yolov3_darknet53_270e_coco.yml 2>&1 | tee yolov3_dy_print.txt
  1. 运行parse.py如下,会解析静态图和动态图权重名对应关系,并将结果保存为weight_name_map.txt

命令行传递两个参数,分别为动态图输出文件和静态图输出文件

python parse.py yolov3_dy_print.txt yolov3_st_print.txt

若出现无法匹配的权重名(即shape匹配失败),会有如下提示,手动选择匹配的权重名继续匹配。

bn2c_branch2c_scale                                matched      backbone.res2.res2c.branch2c.norm.weight
bn2c_branch2c_offset                               matched      backbone.res2.res2c.branch2c.norm.bias
bn2c_branch2c_mean                                 matched      backbone.res2.res2c.branch2c.norm._mean
bn2c_branch2c_variance                             matched      backbone.res2.res2c.branch2c.norm._variance
res3a_branch2a_weights                             matched      backbone.res3.res3a.branch2a.conv.weight
bn3a_branch2a_scale                                matched      backbone.res3.res3a.branch2a.norm.weight
bn3a_branch2a_offset                               matched      backbone.res3.res3a.branch2a.norm.bias
bn3a_branch2a_mean                                 matched      backbone.res3.res3a.branch2a.norm._mean
bn3a_branch2a_variance                             matched      backbone.res3.res3a.branch2a.norm._variance
('*****match wrong*******', ('res3a_branch2b_weights', [128, 128, 3, 3]), ('weight', [512, 256, 1, 1], 'backbone.res3.res3a.short.conv.weight'), ', is ConvBN/FC block: ', 1)
Please select dygraph weight name for res3a_branch2b_weights:
         1. backbone.res3.res3a.branch2b.conv.weight
         2. backbone.res3.res3b.branch2b.conv.weight
         3. backbone.res3.res3c.branch2b.conv.weight
         4. backbone.res3.res3d.branch2b.conv.weight
selection:

如上输出,则为 res3a_branch2b_weights 判断后手动选择1,即backbone.res3.res3a.branch2b.conv.weight继续匹配

注意: 解析完成后最好自行check一下weight_name_map.txt中的权重对应关系,如mask_rcnn_fpn中优于fpn计算顺序动态图和静态图相反,同时shape一致,脚本无法识别出这种情况,判定匹配通过,所以会存在如下情况,可手动修改下weight_name_map.txt

fpn_inner_res2_sum_lateral_w                       neck.fpn_inner_res2_sum_lateral.weight
fpn_inner_res2_sum_lateral_b                       neck.fpn_inner_res2_sum_lateral.bias
#  -------------------- 2, 3, 4, 5 顺序反了 --------------------
fpn_res5_sum_w                                     neck.fpn_res2_sum.weight
fpn_res5_sum_b                                     neck.fpn_res2_sum.bias
fpn_res4_sum_w                                     neck.fpn_res3_sum.weight
fpn_res4_sum_b                                     neck.fpn_res3_sum.bias
fpn_res3_sum_w                                     neck.fpn_res4_sum.weight
fpn_res3_sum_b                                     neck.fpn_res4_sum.bias
fpn_res2_sum_w                                     neck.fpn_res5_sum.weight
fpn_res2_sum_b                                     neck.fpn_res5_sum.bias
#  ---------------------------------------------------------
conv_rpn_fpn2_w                                    rpn_head.rpn_feat.rpn_conv.weight
conv_rpn_fpn2_b                                    rpn_head.rpn_feat.rpn_conv.bias
rpn_cls_logits_fpn2_w                              rpn_head.rpn_rois_score.weight
rpn_cls_logits_fpn2_b                              rpn_head.rpn_rois_score.bias

若使用ResNet结构,注意确认一下shortcut分支的权重顺序,即动态图short.conv/norm应该对应静态图的branch1,若出现错位,可手动修改下weight_name_map.txt

bn2a_branch2b_mean                                 backbone.res2.res2a.branch2b.norm._mean
bn2a_branch2b_variance                             backbone.res2.res2a.branch2b.norm._variance
#  -------------------- short和branch2顺序反了 --------------------
res2a_branch2c_weights                             backbone.res2.res2a.short.conv.weight
bn2a_branch2c_scale                                backbone.res2.res2a.short.norm.weight
bn2a_branch2c_offset                               backbone.res2.res2a.short.norm.bias
bn2a_branch2c_mean                                 backbone.res2.res2a.short.norm._mean
bn2a_branch2c_variance                             backbone.res2.res2a.short.norm._variance
res2a_branch1_weights                              backbone.res2.res2a.branch2c.conv.weight
bn2a_branch1_scale                                 backbone.res2.res2a.branch2c.norm.weight
bn2a_branch1_offset                                backbone.res2.res2a.branch2c.norm.bias
bn2a_branch1_mean                                  backbone.res2.res2a.branch2c.norm._mean
bn2a_branch1_variance                              backbone.res2.res2a.branch2c.norm._variance
#  ----------------------------------------------------------------
res2b_branch2a_weights                             backbone.res2.res2b.branch2a.conv.weight
bn2b_branch2a_scale                                backbone.res2.res2b.branch2a.norm.weight
  1. 使用convert.py 和 3 中生成的 weight_name_map.txt 完成权重转换,命令如下:

命令行传递三个参数,为静态图权重(支持url),3中的weight_name_map.txt和导出动态图权重文件名。

export PYTHONPATH=$PYTHONPATH:<path/to/PaddleDetection>
python convert.py https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar weight_name_map.txt new.pdparams

new.pdparams 即为转换后的动态图权重,确认下权重大小是否一致。

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%