Skip to content

Commit

Permalink
Don't replace reduction init axis with new axis if bound to a thread. (
Browse files Browse the repository at this point in the history
…apache#3408)

* Don't replace reduction init axis with new axis if bound to a thread.

* Linter.

* Reduce bind test case.

* Guard test on CUDA support.

* [CUDA TE TESTS] Add rfactor predicate test, add global bx and tx.

* [CUDA TE TESTS] Add loop partition test for simple rfactor case.
  • Loading branch information
csarofeen authored and wweic committed Sep 6, 2019
1 parent f8534a2 commit 4c1a0c8
Show file tree
Hide file tree
Showing 3 changed files with 106 additions and 12 deletions.
9 changes: 6 additions & 3 deletions src/op/op_util.cc
Original file line number Diff line number Diff line change
Expand Up @@ -69,11 +69,14 @@ MakeLoopNest(const Stage& stage,

// initialize the offset and loop_level
Var var = bind_iv->var;
if (new_loop_var) {
var = Var(iv->var->name_hint + ".init", bind_iv->var.type());
}

// Mark the iter var in the IR, to remember the point
if (bind_iv->thread_tag.length() == 0) {
// Only generate new loop if we're not bound to a thread.
if (new_loop_var) {
var = Var(iv->var->name_hint + ".init", bind_iv->var.type());
}

ForType for_type = ForType::Serial;
IterVarAttr it_attr;
if (stage->iter_var_attrs.count(iv)) {
Expand Down
80 changes: 71 additions & 9 deletions tests/python/unittest/test_codegen_cuda.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
Expand All @@ -19,6 +20,10 @@
from tvm.contrib.nvcc import have_fp16, have_int8
from tvm.contrib import nvcc

tx = tvm.thread_axis("threadIdx.x")
bx = tvm.thread_axis("blockIdx.x")


def test_cuda_vectorize_add():
num_thread = 8
def check_cuda(dtype, n, lanes):
Expand All @@ -35,8 +40,8 @@ def check_cuda(dtype, n, lanes):
B = tvm.compute((n,), lambda i: A[i]+tvm.const(1, A.dtype), name='B')
s = tvm.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=num_thread)
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
s[B].bind(xo, bx)
s[B].bind(xi, tx)
fun = tvm.build(s, [A, B], "cuda")
ctx = tvm.gpu(0)
a = tvm.nd.empty((n,), A.dtype, ctx).copyfrom(
Expand Down Expand Up @@ -65,8 +70,8 @@ def check_cuda(dtype, n, lanes):
lambda i: tvm.call_pure_extern("int32", "__dp4a", A[i], B[i], C[i]), name='D')
s = tvm.create_schedule(D.op)
xo, xi = s[D].split(D.op.axis[0], factor=num_thread)
s[D].bind(xo, tvm.thread_axis("blockIdx.x"))
s[D].bind(xi, tvm.thread_axis("threadIdx.x"))
s[D].bind(xo, bx)
s[D].bind(xi, tx)
fun = tvm.build(s, [A, B, C, D], "cuda")
np_a = np.random.randint(low=-128, high=127, size=(n,lanes))
np_b = np.random.randint(low=-128, high=127, size=(n,lanes))
Expand All @@ -91,9 +96,9 @@ def check_cuda(dtype, n, lanes):
A = tvm.placeholder((n,), name='A', dtype="%sx%d" % (dtype, lanes))
B = tvm.compute((n,), lambda i: A[i], name='B')
s = tvm.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=num_thread)
s[B].bind(bx, tvm.thread_axis("blockIdx.x"))
s[B].bind(tx, tvm.thread_axis("threadIdx.x"))
block, thread = s[B].split(B.op.axis[0], factor=num_thread)
s[B].bind(block, bx)
s[B].bind(thread, tx)
fun = tvm.build(s, [A, B], "cuda", name="vector_load")
np_a = np.random.randint(low=-128, high=127, size=(n,lanes))
a = tvm.nd.empty((n,), A.dtype, ctx).copyfrom(np_a)
Expand All @@ -115,7 +120,7 @@ def check_cuda(n, value):
s = tvm.create_schedule(A.op)
y, x = s[A].op.axis
s[A].vectorize(x)
s[A].bind(y, tvm.thread_axis("blockIdx.x"))
s[A].bind(y, bx)
fun = tvm.build(s, [A], "cuda", name="make_int8x4")
np_a = np.full((n, lanes), value, dtype=dtype)
a = tvm.nd.empty(np_a.shape, dtype, ctx)
Expand All @@ -133,7 +138,7 @@ def check_inf_nan(ctx, n, value, dtype):
inf_value = tvm.const(value, dtype=dtype)
C = tvm.compute((n,), lambda i: inf_value, name='C')
s = tvm.create_schedule(C.op)
s[C].bind(s[C].op.axis[0], tvm.thread_axis("threadIdx.x"))
s[C].bind(s[C].op.axis[0], tx)
fun = tvm.build(s, [A, C], target)
a = tvm.nd.empty((n,), A.dtype, ctx)
c = tvm.nd.empty((n,), A.dtype, ctx)
Expand Down Expand Up @@ -197,10 +202,67 @@ def vectorizer(op):
module(nda, ndb, ndc)
tvm.testing.assert_allclose(ndc.asnumpy(), ref)


def test_cuda_reducition_binding():
if not tvm.gpu(0).exist or not tvm.module.enabled("cuda"):
print("skip because cuda is not enabled..")
return

k = tvm.reduce_axis((0, 32), 'k')
A = tvm.placeholder((96, 32), name='A')
B = tvm.compute( (96,), lambda m:
tvm.sum(A[m, k], axis=k),
name='B')
s = tvm.create_schedule(B.op)

s[B].reorder(B.op.reduce_axis[0], B.op.axis[0])

mo, _ = s[B].split(B.op.axis[0], 32)
s[B].bind(mo, tvm.thread_axis("blockIdx.x"))

fcuda = tvm.build(s, [A, B], "cuda")

def test_rfactor_predicates():
if not tvm.gpu(0).exist or not tvm.module.enabled("cuda"):
print("skip because cuda is not enabled..")
return

n = tvm.reduce_axis((0, 129), 'n')
A = tvm.placeholder((129,), name='A')
B = tvm.compute( (1, ), lambda b:
tvm.sum(A[n],
axis=n),
name='B'
)

s = tvm.create_schedule(B.op)

_, ni = s[B].split(s[B].op.reduce_axis[0], factor=8)

BF = s.rfactor(B, ni, 0)
s[B].set_store_predicate(tx.var.equal(0))

s[B].bind(s[B].op.reduce_axis[0], tx)
s[B].bind(s[B].op.axis[0], bx)

s[BF].compute_at(s[B], s[B].op.axis[0])

_, noi = s[BF].split(s[BF].op.reduce_axis[0], factor=2)

BF2 = s.rfactor(BF, noi, 0)

s[BF].bind(s[BF].op.axis[0], tx)
s[BF2].compute_at(s[BF], s[BF].op.axis[1])

fcuda = tvm.build(s, [A, B], "cuda")


if __name__ == "__main__":
test_cuda_vectorize_add()
test_cuda_multiply_add()
test_cuda_vectorize_load()
test_cuda_make_int8x4()
test_cuda_inf_nan()
test_cuda_shuffle()
test_cuda_reducition_binding()
test_rfactor_predicates()
29 changes: 29 additions & 0 deletions tests/python/unittest/test_pass_loop_partition.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,6 +384,34 @@ def test_double_splitting_with_indivisible_factors():
tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy(), rtol=1e-5)
tvm.testing.assert_allclose(d.asnumpy(), a.asnumpy(), rtol=1e-5)

def test_simple_rfactor():
K = 16*4+4
k = tvm.reduce_axis((0, K), 'k')

A = tvm.placeholder((1, K), name='A')

B = tvm.compute( (1,), lambda b:
tvm.sum(A[b, k], axis=k),
name='B'
)

s = tvm.create_schedule(B.op)
ko, _ = s[B].split(s[B].op.reduce_axis[0], 16)
BF = s.rfactor(B, ko, 0)

s.normalize()
bounds = tvm.schedule.InferBound(s)

stmt1 = tvm.schedule.ScheduleOps(s, bounds)
stmt1 = tvm.ir_pass.Simplify(stmt1)

stmt2 = tvm.ir_pass.LoopPartition(stmt1, True)
stmt2 = tvm.ir_pass.Simplify(stmt2)

#make sure loop partition actually did something
assert not tvm.ir_pass.Equal(stmt1.body, stmt2.body)


if __name__ == "__main__":
test_basic()
test_const_loop()
Expand All @@ -402,3 +430,4 @@ def test_double_splitting_with_indivisible_factors():
test_cce_loop_3()
test_conv_tiling()
test_double_splitting_with_indivisible_factors()
test_simple_rfactor()

0 comments on commit 4c1a0c8

Please sign in to comment.