Skip to content

Commit

Permalink
set count_include_pad for avg_pool2d in TensorRT wrapper
Browse files Browse the repository at this point in the history
  • Loading branch information
markrogersjr committed Jun 28, 2019
1 parent 1e737ee commit b1a9d45
Show file tree
Hide file tree
Showing 2 changed files with 74 additions and 0 deletions.
11 changes: 11 additions & 0 deletions src/contrib/subgraph/tensorrt_executor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -587,6 +587,17 @@ void AddPooling(
} else {
network->setPoolingOutputDimensionsFormula(nullptr);
}
if (!is_global_pool) {
if (nodes[nid].attrs.count("count_include_pad")) {
if (nodes[nid].attrs.at("count_include_pad") == "True") {
pool_layer->setAverageCountExcludesPadding(false);
} else {
pool_layer->setAverageCountExcludesPadding(true);
}
} else {
pool_layer->setAverageCountExcludesPadding(true);
}
}
nid2layer->emplace(nid, pool_layer);
}

Expand Down
63 changes: 63 additions & 0 deletions tests/python/tensorrt/test_avg_pool2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import numpy as np
import mxnet as mx
from mxnet import gluon
import nnvm
import tvm
from tvm.contrib import graph_runtime


def test_avg_pool2d():

# Generate the data
np.random.seed(0)
input_shape = [1, 1, 28, 28]
output_shape = [1, 10]
data = np.random.random(input_shape).astype('float32')

# Baseline model in MXNet
net = gluon.nn.HybridSequential()
with net.name_scope():
net.add(gluon.nn.AvgPool2D(pool_size=3, strides=1, padding=1))
net.add(gluon.nn.Dense(10))
net.collect_params().initialize(mx.init.Xavier(), ctx=mx.cpu())
net.hybridize()
baseline_input = mx.nd.array(data, ctx=mx.cpu())
baseline_output = net(baseline_input).asnumpy()

# Compiled model
sym, params = nnvm.frontend.from_mxnet(net)
target = tvm.target.cuda()
with nnvm.compiler.build_config(opt_level=3, ext_accel='tensorrt'):
graph, lib, params = nnvm.compiler.build(sym, target,
shape={'data': input_shape},
params=params)
compiled_model = graph_runtime.create(graph, lib, tvm.gpu())
compiled_input = tvm.nd.array(data, ctx=tvm.gpu())
compiled_model.set_input('data', compiled_input)
compiled_model.set_input(**params)
compiled_model.run()
compiled_output = compiled_model.get_output(0, tvm.nd.empty(output_shape)).asnumpy()

# Compare outputs
np.testing.assert_almost_equal(baseline_output, compiled_output, decimal=3)


if __name__ == '__main__':
test_avg_pool2d()

0 comments on commit b1a9d45

Please sign in to comment.