Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add prune_scale3d argument to MCMCStrategy #567

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion examples/simple_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -352,7 +352,9 @@ def __init__(
scene_scale=self.scene_scale
)
elif isinstance(self.cfg.strategy, MCMCStrategy):
self.strategy_state = self.cfg.strategy.initialize_state()
self.strategy_state = self.cfg.strategy.initialize_state(
scene_scale=self.scene_scale
)
else:
assert_never(self.cfg.strategy)

Expand Down
17 changes: 13 additions & 4 deletions gsplat/strategy/mcmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ class MCMCStrategy(Strategy):
refine_stop_iter (int): Stop refining GSs after this iteration. Default to 25_000.
refine_every (int): Refine GSs every this steps. Default to 100.
min_opacity (float): GSs with opacity below this value will be pruned. Default to 0.005.
prune_scale3d (float): GSs with 3d scale (normalized by scene_scale) above this
value will be pruned. Default is 0.1.
verbose (bool): Whether to print verbose information. Default to False.

Examples:
Expand All @@ -37,7 +39,7 @@ class MCMCStrategy(Strategy):
>>> optimizers: Dict[str, torch.optim.Optimizer] = ...
>>> strategy = MCMCStrategy()
>>> strategy.check_sanity(params, optimizers)
>>> strategy_state = strategy.initialize_state()
>>> strategy_state = strategy.initialize_state(scene_scale=scene_scale)
>>> for step in range(1000):
... render_image, render_alpha, info = rasterization(...)
... loss = ...
Expand All @@ -52,16 +54,17 @@ class MCMCStrategy(Strategy):
refine_stop_iter: int = 25_000
refine_every: int = 100
min_opacity: float = 0.005
prune_scale3d: float = 0.1
verbose: bool = False

def initialize_state(self) -> Dict[str, Any]:
def initialize_state(self, scene_scale: float = 1.0) -> Dict[str, Any]:
"""Initialize and return the running state for this strategy."""
n_max = 51
binoms = torch.zeros((n_max, n_max))
for n in range(n_max):
for k in range(n + 1):
binoms[n, k] = math.comb(n, k)
return {"binoms": binoms}
return {"binoms": binoms, "scene_scale": scene_scale}

def check_sanity(
self,
Expand Down Expand Up @@ -125,7 +128,7 @@ def step_post_backward(
and step % self.refine_every == 0
):
# teleport GSs
n_relocated_gs = self._relocate_gs(params, optimizers, binoms)
n_relocated_gs = self._relocate_gs(params, optimizers, binoms, state)
if self.verbose:
print(f"Step {step}: Relocated {n_relocated_gs} GSs.")

Expand All @@ -150,9 +153,15 @@ def _relocate_gs(
params: Union[Dict[str, torch.nn.Parameter], torch.nn.ParameterDict],
optimizers: Dict[str, torch.optim.Optimizer],
binoms: Tensor,
state: Dict[str, Any],
) -> int:
opacities = torch.sigmoid(params["opacities"].flatten())
dead_mask = opacities <= self.min_opacity
is_too_big = (
torch.exp(params["scales"]).max(dim=-1).values
> self.prune_scale3d * state["scene_scale"]
)
dead_mask = dead_mask | is_too_big
n_gs = dead_mask.sum().item()
if n_gs > 0:
relocate(
Expand Down