Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Update expected shape for per token strategy #210

Merged
merged 6 commits into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion src/compressed_tensors/quantization/lifecycle/initialize.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,10 @@ def _initialize_scale_zero_point(
device = get_execution_device(module)

# infer expected scale/zero point shape
expected_shape = 1 # per tensor
if quantization_args.strategy == QuantizationStrategy.TOKEN:
expected_shape = (1, 1)
else:
expected_shape = 1

if base_name == "weight" and weight_shape is not None:
if quantization_args.strategy == QuantizationStrategy.CHANNEL:
Expand Down
2 changes: 0 additions & 2 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,6 @@ def update_scale_zp(module: torch.nn.Module, base_name: str, value: torch.Tensor
min_val = torch.amin(value, dim=dim, keepdims=True)
max_val = torch.amax(value, dim=dim, keepdims=True)
scale, zp = calculate_qparams(min_val, max_val, args)
scale = scale.reshape((1, 1))
zp = zp.reshape((1, 1))
update_parameter_data(module, scale, f"{base_name}_scale")
update_parameter_data(module, zp, f"{base_name}_zero_point")

Expand Down
89 changes: 87 additions & 2 deletions tests/test_quantization/lifecycle/test_initialize.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,15 +14,25 @@


import pytest
from compressed_tensors.quantization import (
ActivationOrdering,
QuantizationArgs,
QuantizationScheme,
QuantizationStatus,
QuantizationStrategy,
)
from compressed_tensors.quantization.lifecycle.initialize import (
initialize_module_for_quantization,
)
from compressed_tensors.quantization.quant_args import QuantizationArgs
from compressed_tensors.quantization.quant_config import QuantizationStatus
from torch.nn import Linear


NUM_BITS = 8
Q_PARAM_NAMES = {
"input_activations": "input",
"weights": "weight",
"output_activations": "output",
}


@pytest.mark.parametrize(
Expand Down Expand Up @@ -77,3 +87,78 @@ def test_initialize_module_for_quantization(
assert hasattr(layer, "quantization_status")

assert layer.quantization_status == QuantizationStatus.INITIALIZED


@pytest.mark.parametrize(
"weights,input_activations",
[
(
QuantizationArgs(strategy="tensor"),
QuantizationArgs(strategy="tensor"),
),
(
QuantizationArgs(strategy="channel"),
None,
),
(
QuantizationArgs(strategy="group", group_size=2),
None,
),
(
QuantizationArgs(strategy="group", group_size=2, actorder="group"),
None,
),
(
QuantizationArgs(strategy="group", group_size=2, actorder="weight"),
None,
),
(
QuantizationArgs(strategy="block"),
QuantizationArgs(strategy="block"),
),
(
QuantizationArgs(strategy="token"),
QuantizationArgs(strategy="token"),
),
],
)
def test_initialize_quantization_parameters(weights, input_activations):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

general question - for output activation we dont need?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We could test output activation, but I decided not to for test simplicity

quantization_scheme = QuantizationScheme(
targets=["*"],
weights=weights,
input_activations=input_activations,
)
layer = Linear(7, 8)
initialize_module_for_quantization(layer, quantization_scheme)

for q_type in ("input_activations", "weights"):
args = getattr(quantization_scheme, q_type)
if args is None:
continue
q_param_name = Q_PARAM_NAMES[q_type]

# scale and zero point
if args.strategy == QuantizationStrategy.TENSOR:
expected_shape = (1,)

elif args.strategy == QuantizationStrategy.CHANNEL: # only weight
expected_shape = (layer.weight.shape[0], 1)

elif args.strategy == QuantizationStrategy.GROUP: # only weight
num_groups = layer.weight.shape[1] // args.group_size
expected_shape = (layer.weight.shape[0], max(num_groups, 1))

elif args.strategy == QuantizationStrategy.BLOCK:
expected_shape = (1,)

elif args.strategy == QuantizationStrategy.TOKEN:
expected_shape = (1, 1)

assert getattr(layer, f"{q_param_name}_scale").shape == expected_shape
assert getattr(layer, f"{q_param_name}_zero_point").shape == expected_shape

# g_idx
if args.actorder == ActivationOrdering.GROUP:
assert getattr(layer, f"{q_param_name}_g_idx").shape == (
layer.weight.shape[1],
)
20 changes: 10 additions & 10 deletions tests/test_quantization/test_configs/test_strategies.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,8 @@ def test_channelwise(
if input_symmetry is not None:
mock_per_channel_calibration(model, base_name="input", value=inputs)

assert list(model.weight_scale.shape) == [model_shape[1], 1]
assert list(model.weight_zero_point.shape) == [model_shape[1], 1]
assert model.weight_scale.shape == (model_shape[1], 1)
assert model.weight_zero_point.shape == (model_shape[1], 1)


@torch.no_grad
Expand Down Expand Up @@ -97,14 +97,14 @@ def test_group(
model, base_name="input", value=inputs, group_size=group_size
)

assert list(model.weight_scale.shape) == [
assert model.weight_scale.shape == (
model_shape[1],
int(model_shape[0] / group_size),
]
assert list(model.weight_zero_point.shape) == [
)
assert model.weight_zero_point.shape == (
model_shape[1],
int(model_shape[0] / group_size),
]
)


@torch.no_grad
Expand All @@ -131,8 +131,8 @@ def test_token(
mock_per_channel_calibration(model, base_name="weight", value=model.weight)
mock_per_token_calibration(model, base_name="input", value=inputs)

assert list(model.input_scale.shape) == [1, 1]
assert list(model.input_zero_point.shape) == [1, 1]
assert model.input_scale.shape == (1, 1)
assert model.input_zero_point.shape == (1, 1)

assert list(model.weight_scale.shape) == [256, 1]
assert list(model.weight_zero_point.shape) == [256, 1]
assert model.weight_scale.shape == (256, 1)
assert model.weight_zero_point.shape == (256, 1)
58 changes: 58 additions & 0 deletions tests/test_quantization/test_utils/test_helpers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from compressed_tensors.quantization import QuantizationArgs, QuantizationStrategy
from compressed_tensors.quantization.utils import calculate_qparams


@pytest.mark.parametrize(
"keepdims,strategy,exp_shape",
[
(
False,
QuantizationStrategy.TENSOR,
torch.Size(
[
1,
]
),
),
(True, QuantizationStrategy.CHANNEL, torch.Size([1, 1])),
(True, QuantizationStrategy.GROUP, torch.Size([1, 1])),
(
False,
QuantizationStrategy.BLOCK,
torch.Size(
[
1,
]
),
),
(True, QuantizationStrategy.TOKEN, torch.Size([1, 1])),
],
)
def test_calculate_qparams(keepdims, strategy, exp_shape):
value = torch.randn(14, 5)
min_val = torch.amin(value, dim=tuple(), keepdims=keepdims)
max_val = torch.amax(value, dim=tuple(), keepdims=keepdims)

if strategy == QuantizationStrategy.GROUP:
args = QuantizationArgs(strategy=strategy, group_size=2)
else:
args = QuantizationArgs(strategy=strategy)
scale, zp = calculate_qparams(min_val, max_val, args)
assert scale.shape == exp_shape
assert zp.shape == exp_shape