This repository has been archived by the owner on Oct 11, 2024. It is now read-only.
forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[CI/Build] Simplify OpenAI server setup in tests (vllm-project#5100)
- Loading branch information
1 parent
c44efdc
commit b9c0824
Showing
6 changed files
with
284 additions
and
238 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import openai | ||
import pytest | ||
import ray | ||
|
||
from ..utils import VLLM_PATH, RemoteOpenAIServer | ||
|
||
EMBEDDING_MODEL_NAME = "intfloat/e5-mistral-7b-instruct" | ||
|
||
pytestmark = pytest.mark.openai | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def ray_ctx(): | ||
ray.init(runtime_env={"working_dir": VLLM_PATH}) | ||
yield | ||
ray.shutdown() | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def embedding_server(ray_ctx): | ||
return RemoteOpenAIServer([ | ||
"--model", | ||
EMBEDDING_MODEL_NAME, | ||
# use half precision for speed and memory savings in CI environment | ||
"--dtype", | ||
"bfloat16", | ||
"--enforce-eager", | ||
"--max-model-len", | ||
"8192", | ||
"--enforce-eager", | ||
]) | ||
|
||
|
||
@pytest.mark.asyncio | ||
@pytest.fixture(scope="module") | ||
def embedding_client(embedding_server): | ||
return embedding_server.get_async_client() | ||
|
||
|
||
@pytest.mark.asyncio | ||
@pytest.mark.parametrize( | ||
"model_name", | ||
[EMBEDDING_MODEL_NAME], | ||
) | ||
async def test_single_embedding(embedding_client: openai.AsyncOpenAI, | ||
model_name: str): | ||
input_texts = [ | ||
"The chef prepared a delicious meal.", | ||
] | ||
|
||
# test single embedding | ||
embeddings = await embedding_client.embeddings.create( | ||
model=model_name, | ||
input=input_texts, | ||
encoding_format="float", | ||
) | ||
assert embeddings.id is not None | ||
assert len(embeddings.data) == 1 | ||
assert len(embeddings.data[0].embedding) == 4096 | ||
assert embeddings.usage.completion_tokens == 0 | ||
assert embeddings.usage.prompt_tokens == 9 | ||
assert embeddings.usage.total_tokens == 9 | ||
|
||
# test using token IDs | ||
input_tokens = [1, 1, 1, 1, 1] | ||
embeddings = await embedding_client.embeddings.create( | ||
model=model_name, | ||
input=input_tokens, | ||
encoding_format="float", | ||
) | ||
assert embeddings.id is not None | ||
assert len(embeddings.data) == 1 | ||
assert len(embeddings.data[0].embedding) == 4096 | ||
assert embeddings.usage.completion_tokens == 0 | ||
assert embeddings.usage.prompt_tokens == 5 | ||
assert embeddings.usage.total_tokens == 5 | ||
|
||
|
||
@pytest.mark.asyncio | ||
@pytest.mark.parametrize( | ||
"model_name", | ||
[EMBEDDING_MODEL_NAME], | ||
) | ||
async def test_batch_embedding(embedding_client: openai.AsyncOpenAI, | ||
model_name: str): | ||
# test List[str] | ||
input_texts = [ | ||
"The cat sat on the mat.", "A feline was resting on a rug.", | ||
"Stars twinkle brightly in the night sky." | ||
] | ||
embeddings = await embedding_client.embeddings.create( | ||
model=model_name, | ||
input=input_texts, | ||
encoding_format="float", | ||
) | ||
assert embeddings.id is not None | ||
assert len(embeddings.data) == 3 | ||
assert len(embeddings.data[0].embedding) == 4096 | ||
|
||
# test List[List[int]] | ||
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24], | ||
[25, 32, 64, 77]] | ||
embeddings = await embedding_client.embeddings.create( | ||
model=model_name, | ||
input=input_tokens, | ||
encoding_format="float", | ||
) | ||
assert embeddings.id is not None | ||
assert len(embeddings.data) == 4 | ||
assert len(embeddings.data[0].embedding) == 4096 | ||
assert embeddings.usage.completion_tokens == 0 | ||
assert embeddings.usage.prompt_tokens == 17 | ||
assert embeddings.usage.total_tokens == 17 |
Oops, something went wrong.