Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
Implement custom all reduce kernels (vllm-project#2192)
Browse files Browse the repository at this point in the history
  • Loading branch information
hanzhi713 authored and alexm-redhat committed Feb 13, 2024
1 parent eb28215 commit dbf5d29
Show file tree
Hide file tree
Showing 18 changed files with 1,456 additions and 66 deletions.
148 changes: 148 additions & 0 deletions csrc/custom_all_reduce.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>

#include "custom_all_reduce.cuh"

// fake pointer type
using fptr_t = uint64_t;
static_assert(sizeof(void *) == sizeof(fptr_t));

fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink) {
int world_size = offsets.size();
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (world_size != handles.size())
throw std::invalid_argument(
"handles length should equal to offsets length");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");

cudaIpcMemHandle_t ipc_handles[8];
for (int i = 0; i < world_size; i++) {
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
}
return (fptr_t) new vllm::CustomAllreduce(
reinterpret_cast<vllm::Metadata *>(meta.data_ptr()), rank_data.data_ptr(),
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
}

/**
* Make sure tensor t's data lies completely within ((char)t.data_ptr()) +
* t.numel() * t.element_size(). This is slightly weaker than t.is_contiguous()
* because it allows transpose of contiguous slice (i.e. slicing the first
* dimension). Currently, we require this because stride information is not
* passed into the kernels and we treat input tensors as flat.
*
* Examples
* A = torch.zeros(3, 3, 3)
* 1. A: OK
* 2. A[1:]: OK
* 3. A.permute(2, 0, 1): OK
* 4. A[1:].permute(2, 0, 1): OK
* 5. A[None].expand(2, -1, -1, -1): Not OK
* 6. A[:, 1:, 1:]: Not OK
*/
bool _is_weak_contiguous(torch::Tensor &t) {
return t.is_contiguous() ||
(t.storage().nbytes() - t.storage_offset() * t.element_size() ==
t.numel() * t.element_size());
}

bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink) {
auto inp_size = inp.numel() * inp.element_size();
// custom allreduce requires input byte size to be multiples of 16
if (inp_size % 16 != 0) return false;
if (!_is_weak_contiguous(inp)) return false;
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
// 4 PCIE GPUs use 2 stage allreduce, and is only faster than NCCL when size
// <= 512k
return world_size <= 4 && inp_size <= 512 * 1024;
}

void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
cudaStream_t stream) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
TORCH_CHECK(_is_weak_contiguous(out));
switch (out.scalar_type()) {
case at::ScalarType::Float: {
fa->allreduce<float>(stream, reinterpret_cast<float *>(inp.data_ptr()),
reinterpret_cast<float *>(out.data_ptr()),
out.numel());
break;
}
case at::ScalarType::Half: {
fa->allreduce<half>(stream, reinterpret_cast<half *>(inp.data_ptr()),
reinterpret_cast<half *>(out.data_ptr()),
out.numel());
break;
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
case at::ScalarType::BFloat16: {
fa->allreduce<nv_bfloat16>(
stream, reinterpret_cast<nv_bfloat16 *>(inp.data_ptr()),
reinterpret_cast<nv_bfloat16 *>(out.data_ptr()), out.numel());
break;
}
#endif
default:
throw std::runtime_error(
"custom allreduce only supports float32, float16 and bfloat16");
}
}

void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
_all_reduce(_fa, inp, out, stream);
}

void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();

auto input_size = inp.numel() * inp.element_size();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK(input_size <= reg_buffer.numel() * reg_buffer.element_size(),
"registered buffer is too small to contain the input");
AT_CUDA_CHECK(cudaMemcpyAsync(reg_buffer.data_ptr(), inp.data_ptr(),
input_size, cudaMemcpyDeviceToDevice, stream));
_all_reduce(_fa, reg_buffer, out, stream);
}

void dispose(fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
delete fa;
}

int meta_size() { return sizeof(vllm::Metadata); }

void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_buffer(handles, offsets, t.data_ptr());
}

std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(
fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
return fa->get_graph_buffer_ipc_meta();
}

void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_graph_buffers(handles, offsets);
}
Loading

0 comments on commit dbf5d29

Please sign in to comment.