-
Notifications
You must be signed in to change notification settings - Fork 720
/
Copy pathdeseq2_qc.r
executable file
·250 lines (216 loc) · 11.6 KB
/
deseq2_qc.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env Rscript
# Written by Harshil Patel and Gavin Kelly and released under the MIT license.
################################################
################################################
## REQUIREMENTS ##
################################################
################################################
## PCA, HEATMAP AND SCATTERPLOTS FOR SAMPLES IN COUNTS FILE
## - SAMPLE NAMES HAVE TO END IN e.g. "_R1" REPRESENTING REPLICATE ID. LAST 3 CHARACTERS OF SAMPLE NAME WILL BE TRIMMED TO OBTAIN GROUP ID FOR DESEQ2 COMPARISONS.
## - PACKAGES BELOW NEED TO BE AVAILABLE TO LOAD WHEN RUNNING R
################################################
################################################
## LOAD LIBRARIES ##
################################################
################################################
library(optparse)
library(DESeq2)
library(ggplot2)
library(RColorBrewer)
library(pheatmap)
################################################
################################################
## PARSE COMMAND-LINE PARAMETERS ##
################################################
################################################
option_list <- list(
make_option(c("-i", "--count_file" ), type="character", default=NULL , metavar="path" , help="Count file matrix where rows are genes and columns are samples." ),
make_option(c("-f", "--count_col" ), type="integer" , default=3 , metavar="integer", help="First column containing sample count data." ),
make_option(c("-d", "--id_col" ), type="integer" , default=1 , metavar="integer", help="Column containing identifiers to be used." ),
make_option(c("-r", "--sample_suffix" ), type="character", default='' , metavar="string" , help="Suffix to remove after sample name in columns e.g. '.rmDup.bam' if 'DRUG_R1.rmDup.bam'."),
make_option(c("-o", "--outdir" ), type="character", default='./' , metavar="path" , help="Output directory." ),
make_option(c("-p", "--outprefix" ), type="character", default='deseq2', metavar="string" , help="Output prefix." ),
make_option(c("-v", "--vst" ), type="logical" , default=FALSE , metavar="boolean", help="Run vst transform instead of rlog." ),
make_option(c("-c", "--cores" ), type="integer" , default=1 , metavar="integer", help="Number of cores." )
)
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
if (is.null(opt$count_file)){
print_help(opt_parser)
stop("Please provide a counts file.", call.=FALSE)
}
################################################
################################################
## READ IN COUNTS FILE ##
################################################
################################################
count.table <- read.delim(file=opt$count_file,header=TRUE, row.names=NULL)
rownames(count.table) <- count.table[,opt$id_col]
count.table <- count.table[,opt$count_col:ncol(count.table),drop=FALSE]
colnames(count.table) <- gsub(opt$sample_suffix,"",colnames(count.table))
colnames(count.table) <- gsub(pattern='\\.$', replacement='', colnames(count.table))
################################################
################################################
## RUN DESEQ2 ##
################################################
################################################
if (file.exists(opt$outdir) == FALSE) {
dir.create(opt$outdir, recursive=TRUE)
}
setwd(opt$outdir)
samples.vec <- colnames(count.table)
name_components <- strsplit(samples.vec, "_")
n_components <- length(name_components[[1]])
decompose <- n_components!=1 && all(sapply(name_components, length)==n_components)
coldata <- data.frame(samples.vec, sample=samples.vec, row.names=1)
if (decompose) {
groupings <- as.data.frame(lapply(1:n_components, function(i) sapply(name_components, "[[", i)))
n_distinct <- sapply(groupings, function(grp) length(unique(grp)))
groupings <- groupings[n_distinct!=1 & n_distinct!=length(samples.vec)]
if (ncol(groupings)!=0) {
names(groupings) <- paste0("Group", 1:ncol(groupings))
coldata <- cbind(coldata, groupings)
} else {
decompose <- FALSE
}
}
DDSFile <- paste(opt$outprefix,".dds.RData",sep="")
counts <- count.table[,samples.vec,drop=FALSE]
# `design=~1` creates intercept-only model, equivalent to setting `blind=TRUE` for transformation.
dds <- DESeqDataSetFromMatrix(countData=round(counts), colData=coldata, design=~1)
dds <- estimateSizeFactors(dds)
if (min(dim(count.table))<=1) { # No point if only one sample, or one gene
save(dds,file=DDSFile)
saveRDS(dds, file=sub("\\.dds\\.RData$", ".rds", DDSFile))
warning("Not enough samples or genes in counts file for PCA.", call.=FALSE)
quit(save = "no", status = 0, runLast = FALSE)
}
if (!opt$vst) {
vst_name <- "rlog"
rld <- rlog(dds)
} else {
vst_name <- "vst"
rld <- varianceStabilizingTransformation(dds)
}
assay(dds, vst_name) <- assay(rld)
save(dds,file=DDSFile)
saveRDS(dds, file=sub("\\.dds\\.RData$", ".rds", DDSFile))
################################################
################################################
## PLOT QC ##
################################################
################################################
##' PCA pre-processeor
##'
##' Generate all the necessary information to plot PCA from a DESeq2 object
##' in which an assay containing a variance-stabilised matrix of counts is
##' stored. Copied from DESeq2::plotPCA, but with additional ability to
##' say which assay to run the PCA on.
##'
##' @param object The DESeq2DataSet object.
##' @param ntop number of top genes to use for principla components, selected by highest row variance.
##' @param assay the name or index of the assay that stores the variance-stabilised data.
##' @return A data.frame containing the projected data alongside the grouping columns.
##' A 'percentVar' attribute is set which includes the percentage of variation each PC explains,
##' and additionally how much the variation within that PC is explained by the grouping variable.
##' @author Gavin Kelly
plotPCA_vst <- function (object, ntop = 500, assay=length(assays(object))) {
rv <- rowVars(assay(object, assay))
select <- order(rv, decreasing = TRUE)[seq_len(min(ntop, length(rv)))]
pca <- prcomp(t(assay(object, assay)[select, ]), center=TRUE, scale=FALSE)
percentVar <- pca$sdev^2/sum(pca$sdev^2)
df <- cbind( as.data.frame(colData(object)), pca$x)
#Order points so extreme samples are more likely to get label
ord <- order(abs(rank(df$PC1)-median(df$PC1)), abs(rank(df$PC2)-median(df$PC2)))
df <- df[ord,]
attr(df, "percentVar") <- data.frame(PC=seq(along=percentVar), percentVar=100*percentVar)
return(df)
}
PlotFile <- paste(opt$outprefix,".plots.pdf",sep="")
pdf(file=PlotFile, onefile=TRUE, width=7, height=7)
## PCA
ntop <- c(500, Inf)
for (n_top_var in ntop) {
pca.data <- plotPCA_vst(dds, assay=vst_name, ntop=n_top_var)
percentVar <- round(attr(pca.data, "percentVar")$percentVar)
plot_subtitle <- ifelse(n_top_var==Inf, "All genes", paste("Top", n_top_var, "genes"))
pl <- ggplot(pca.data, aes(PC1, PC2, label=paste0(" ", sample, " "))) +
geom_point() +
geom_text(check_overlap=TRUE, vjust=0.5, hjust="inward") +
xlab(paste0("PC1: ",percentVar[1],"% variance")) +
ylab(paste0("PC2: ",percentVar[2],"% variance")) +
labs(title = paste0("First PCs on ", vst_name, "-transformed data"), subtitle = plot_subtitle) +
theme(legend.position="top",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border = element_rect(colour = "black", fill=NA, size=1))
print(pl)
if (decompose) {
pc_names <- paste0("PC", attr(pca.data, "percentVar")$PC)
long_pc <- reshape(pca.data, varying=pc_names, direction="long", sep="", timevar="component", idvar="pcrow")
long_pc <- subset(long_pc, component<=5)
long_pc_grp <- reshape(long_pc, varying=names(groupings), direction="long", sep="", timevar="grouper")
long_pc_grp <- subset(long_pc_grp, grouper<=5)
long_pc_grp$component <- paste("PC", long_pc_grp$component)
long_pc_grp$grouper <- paste0(long_pc_grp$grouper, c("st","nd","rd","th","th")[long_pc_grp$grouper], " prefix")
pl <- ggplot(long_pc_grp, aes(x=Group, y=PC)) +
geom_point() +
stat_summary(fun=mean, geom="line", aes(group = 1)) +
labs(x=NULL, y=NULL, subtitle = plot_subtitle, title="PCs split by sample-name prefixes") +
facet_grid(component~grouper, scales="free_x") +
scale_x_discrete(guide = guide_axis(n.dodge = 3))
print(pl)
}
} # at end of loop, we'll be using the user-defined ntop if any, else all genes
## WRITE PC1 vs PC2 VALUES TO FILE
pca.vals <- pca.data[,c("PC1","PC2")]
colnames(pca.vals) <- paste0(colnames(pca.vals), ": ", percentVar[1:2], '% variance')
pca.vals <- cbind(sample = rownames(pca.vals), pca.vals)
write.table(pca.vals, file = paste(opt$outprefix, ".pca.vals.txt", sep=""),
row.names = FALSE, col.names = TRUE, sep = "\t", quote = TRUE)
## SAMPLE CORRELATION HEATMAP
sampleDists <- dist(t(assay(dds, vst_name)))
sampleDistMatrix <- as.matrix(sampleDists)
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(
sampleDistMatrix,
clustering_distance_rows=sampleDists,
clustering_distance_cols=sampleDists,
col=colors,
main=paste("Euclidean distance between", vst_name, "of samples")
)
## WRITE SAMPLE DISTANCES TO FILE
write.table(cbind(sample = rownames(sampleDistMatrix), sampleDistMatrix),file=paste(opt$outprefix, ".sample.dists.txt", sep=""),
row.names=FALSE, col.names=TRUE, sep="\t", quote=FALSE)
dev.off()
################################################
################################################
## SAVE SIZE FACTORS ##
################################################
################################################
SizeFactorsDir <- "size_factors/"
if (file.exists(SizeFactorsDir) == FALSE) {
dir.create(SizeFactorsDir, recursive=TRUE)
}
NormFactorsFile <- paste(SizeFactorsDir,opt$outprefix, ".size_factors.RData", sep="")
normFactors <- sizeFactors(dds)
save(normFactors, file=NormFactorsFile)
for (name in names(sizeFactors(dds))) {
sizeFactorFile <- paste(SizeFactorsDir,name, ".txt", sep="")
write(as.numeric(sizeFactors(dds)[name]), file=sizeFactorFile)
}
################################################
################################################
## R SESSION INFO ##
################################################
################################################
RLogFile <- "R_sessionInfo.log"
sink(RLogFile)
a <- sessionInfo()
print(a)
sink()
################################################
################################################
################################################
################################################