- [2023/03/07] 📢Our code and model weight is release.
- [2024/03/01] 📢Our paper is released in Arxiv, and camera ready version is updated.
- [2024/01/16] 🎊SymPoint is accepted by ICLR 2024.
We recommend users to use conda
to install the running environment. The following dependencies are required:
conda create -n spv1 python=3.8 -y
conda activate spv1
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install gdown mmcv==0.2.14 svgpathtools==1.6.1 munch==2.5.0 tensorboard==2.12.0 tensorboardx==2.5.1 detectron2==0.6
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
# compile pointops
cd modules/pointops
python setup.py install
download dataset from floorplan website, and convert it to json format data for training and testing.
# download dataset
python download_data.py
# preprocess
#train, val, test
python parse_svg.py --split train --data_dir ./dataset/train/train/svg_gt/
python parse_svg.py --split val --data_dir ./dataset/val/val/svg_gt/
python parse_svg.py --split test --data_dir ./dataset/test/test/svg_gt/
#train
bash tools/train_dist.sh
#test
bash tools/test_dist.sh
As the Attention with Connection Module(ACM) and Contrastive Connection Learning scheme (CCL) are limited for performance, therefore, for simplicity, in this implementation, we abandoned ACM and CCL.
If you find our paper and code useful in your research, please consider giving a star and citation.
@article{liu2024symbol,
title={Symbol as Points: Panoptic Symbol Spotting via Point-based Representation},
author={Liu, Wenlong and Yang, Tianyu and Wang, Yuhan and Yu, Qizhi and Zhang, Lei},
journal={arXiv preprint arXiv:2401.10556},
year={2024}
}