Skip to content

CORE: COnsistent REpresentation Learning for Face Forgery Detection, CVPRW 22

License

Notifications You must be signed in to change notification settings

niyunsheng/CORE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CORE: COnsistent REpresentation Learning for Face Forgery Detection, CVPRW 22

paper

framework

Dependencies

conda create -n CORE python=3.7
conda activate CORE
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install -r requirements

Data pre-processing

Some errors that crop real faces in manipulated videos occur whether select the biggest or highest detection probability face by MTCNN, especially when there are two characters in a video. We solved the problem by using the provided video mask in FF++.

Please run python prep_w_mask.py --src-root Your_source_directory --dst-root Your_destination_directory --fake-type Deepfakes[Face2Face, FaceSwap, NeuralTextures, DeepFakeDetection, real]

Quickstart

You can reproduced the in-dataset results in Tab.1 using the following three commands:

  • Xception: python main.py --dataset celebdf --aug-name None
  • Xception+: python main.py --dataset celebdf --aug-name RE
  • Ours: python main.py --dataset celebdf --aug-name RE --consistency cos --consistency-rate 1.0

For the cross-dataset results in Tab.8, three commands are as follows:

  • None: python main.py --dataset ff --aug-name None
  • RaAug: python main.py --dataset ff --aug-name RaAug --consistency cos --consistency-rate 100.0
  • DFDC_selim: python main.py --dataset ff --aug-name DFDC_selim --consistency cos --consistency-rate 100.0

Thanks

  1. We used RFM data augmentations, https://github.com/crywang/RFM
  2. We used DFDC_selim data augmentations, https://github.com/selimsef/dfdc_deepfake_challenge
  3. We modify xception model to output feature, https://github.com/tstandley/Xception-PyTorch

Citation

@InProceedings{Ni_2022_CVPR,
    author    = {Ni, Yunsheng and Meng, Depu and Yu, Changqian and Quan, Chengbin and Ren, Dongchun and Zhao, Youjian},
    title     = {CORE: COnsistent REpresentation Learning for Face Forgery Detection},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2022},
    pages     = {12-21}
}

About

CORE: COnsistent REpresentation Learning for Face Forgery Detection, CVPRW 22

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages